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Abstract

We classify all surfaces which are both, centroaffine-minimal and equiaffine-
minimal in R3.

1 Introduction.

In equiaffine differential geometry, the variational problem for the equiaffine area
integral leads to the equiaffine minimal surfaces, such surfaces have zero equiaffine
mean curvature H(e) = 0. These surfaces were called affine minimal by Blaschke
and his school ([1]). Calabi [2] pointed out that, for locally strongly convex surfaces
with H(e) = 0, the second variation of the area integral is negative, so he suggested
that the surfaces with H(e) = 0 should be called affine maximal surfaces. Wang [13]
studied the variation of the centroaffine area integral and introduced the centroaffine
minimal hypersurfaces, such hypersurfaces have the property that traceG∇̂T̂ ≡ 0,
where G is the centroaffine metric, ∇̂ the centroaffine metric connection and T̂ the
centroaffine Tchebychev form (see the definitions in §2). The study of Wang [13]
leads to the more general definitions (and the generalizations) of the Tchebychev
operator and Tchebychev hypersurfaces, see [5], [8], [9] and [10].

In this paper, we consider the centroaffine surfaces which are centroaffine-minimal
and equiaffine-minimal in R3. We give the following classification theorem.
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