Parameter-dependent solutions of the classical Yang-Baxter equation on $\mathrm{sl}(\mathrm{n}, \mathrm{C})$.

M. Cahen V. De Smedt

Abstract

For any integers n and $m(m \geq 4)$ such that $n+m$ is odd we exhibit triangular solutions of the classical Yang-Baxter equation on $\operatorname{sl}((n+1)(m+2), \mathbb{C})$ parametrized by points of a quotient of complex projective space $\mathbb{P}^{\left\lfloor\frac{n}{2}\right\rfloor}(\mathbb{C})$ by the action of the symmetric group $\operatorname{Sym}\left(\left\lfloor\frac{n+1}{2}\right\rfloor\right)$ and we prove that no two of these solutions are isomorphic.

1 Introduction

The motivation for this work is to exhibit solutions of the classical Yang-Baxter equations depending on a large number of parameters, Such solutions lead, by a construction indicated by Drinfeld [1], to quantum groups. We hope that these parameter-dependent quantum groups may have interesting geometrical applications [3].

2 The classical Yang-Baxter equation.

Let \mathcal{G} be a finite-dimensional Lie algebra over $\mathbb{K}(=\mathbb{R}$ or $\mathbb{C})$; an element $R \in \wedge^{2} \mathcal{G}$ is said to be a solution of the classical Yang-Baxter equation iff

$$
[R, R]=0
$$

where [,]: $\wedge^{2} \mathcal{G} \otimes \wedge^{2} \mathcal{G} \rightarrow \wedge^{3} \mathcal{G}$ is the Schouten bracket, defined on bivectors by

[^0]
[^0]: Received by the editors November 1995.
 Communicated by Y. Félix.
 1991 Mathematics Subject Classification : 16W30, 17Bxx.
 Key words and phrases : Classical Yang Baxter equation, Poisson Lie Groups.

