A quick and simple proof of Sherman's theorem on order in C^* -algebras

Wiebe R. Pestman*

To every proper convex cone in any real linear space there is (see [1], [2]) a corresponding order relation. A cone is said to be a lattice if any two elements in it have a supremum for this ordering.

Theorem (S. Sherman). Let \mathfrak{A} be a C^* -algebra with or without a unit and let \mathfrak{A}_+ be the real cone of all positive elements in \mathfrak{A} . The cone \mathfrak{A}_+ is a lattice if and only if \mathfrak{A} is Abelian.

Proof. If \mathfrak{A} is Abelian then (by the Gelfand-Naimark theorem) it is easily seen that \mathfrak{A}_+ is a lattice.

To prove the converse, suppose that \mathfrak{A} is not Abelian. Then there exists (see [3], [5], [6], [8]) an irreducible *-representation $x \mapsto A_x$ of \mathfrak{A} on a Hilbert space \mathcal{H} of dimension ≥ 2 . Choose in \mathcal{H} two elements ξ_1, ξ_2 such that $\|\xi_1\| = \|\xi_2\| = 1$ and $\xi_1 \perp \xi_2$, and write

$$\eta_1 = \frac{\xi_1 + \xi_2}{\sqrt{2}}$$
 and $\eta_2 = \frac{\xi_1 - \xi_2}{\sqrt{2}}$

Denote the corresponding positive linear forms (pure states) on \mathfrak{A} by φ_i, ψ_i :

$$\varphi_i(x) = (A_x \xi_i, \xi_i)$$
 and $\psi_i(x) = (A_x \eta_i, \eta_i)$ $x \in \mathfrak{A}, i = 1, 2$

Let \mathfrak{A}_H be the real linear space of all Hermitian elements in \mathfrak{A} . Now $\mathfrak{A}_H = \mathfrak{A}_+$; in a natural way \mathfrak{A}_H is an ordered topological vector space with positive cone \mathfrak{A}_+ (see [3], [6], [8]). The cone of all positive linear forms on \mathfrak{A}_H will be denoted by P. Restriction of a positive linear form on \mathfrak{A} to \mathfrak{A}_H gives an element

Received by the editors September 1995.

Communicated by J. Schmets.

1991 Mathematics Subject Classification: 46L05, 46A40.

Key words and phrases: C^* -algebra, positive cone, lattice.

^{*}Work done as a student at the University of Groningen (the Netherlands).