# An equation $\dot{z}=z^{2}+p(t)$ with no $2 \pi$-periodic solutions 

Dariusz Miklaszewski


#### Abstract

The Mawhin conjecture - that there exists a $2 \pi$-periodic $p: \mathbf{R} \rightarrow \mathbf{C}$ such that $\dot{z}=z^{2}+p(t)$ has no $2 \pi$-periodic solutions - is confirmed by the use of Fourier expansions.


In 1992 R.Srzednicki [4], [5] proved that for any $2 \pi$-periodic continuous $p: \mathbf{R} \rightarrow \mathbf{C}$ the equation $\dot{z}=\bar{z}^{2}+p(t)$ has a $2 \pi$-periodic solution. J.Mawhin [3] conjectured that the similarly looking problem $\dot{z}=z^{2}+p(t)$ could have no $2 \pi$-periodic solutions for some $p$. The first example of such $p$ was constructed by J.Campos and R.Ortega [1]. This work was intended as an attempt to provide with another example by the use of a quite different method. During the preparation of this paper J.Campos [2] determined all the possible dynamics of this equation and found other examples.

Conjecture 1 There exists $R_{0} \in[1,2]$ such that the equation

$$
\begin{equation*}
\dot{z}=z^{2}+R e^{i t} \tag{1}
\end{equation*}
$$

has no $2 \pi$-periodic solutions for $R=R_{0}$.
Let us define the sequence

$$
\begin{equation*}
a_{1}=1, \quad a_{n}=\frac{1}{n} \sum_{k=1}^{n-1} a_{k} a_{n-k} \tag{2}
\end{equation*}
$$

[^0]
[^0]:    Received by the editors July 1995.
    Communicated by J. Mawhin.
    1991 Mathematics Subject Classification : 34, 40, 42.
    Key words and phrases : Riccati equations, periodic solutions, Fourier series, power series, complex plane, inequalities.

