A class of Buekenhout unitals in the Hall plane

S. G. Barwick

Abstract

Let U be the classical unital in $PG(2, q^2)$ secant to ℓ_{∞} . By deriving $PG(2, q^2)$ with respect to a derivation set disjoint from U we obtain a new unital U' in the Hall plane of order q^2 . We show that this unital contains O'Nan configurations and is not isomorphic to the known unitals of the Hall plane, hence it forms a new class of unitals in the Hall plane.

1 Introduction

A unital is a 2- $(q^3 + 1, q + 1, 1)$ design. A unital embedded in a projective plane of order q^2 is a set U of $q^3 + 1$ points such that every line of the plane meets U in 1 or q + 1 points. A line is a **tangent line** or a **secant line** of U if it contains 1 or q + 1 points of U respectively. A point of U lies on 1 tangent and q^2 secant lines of U. A point not in U lies on q + 1 tangent lines and $q^2 - q$ secant lines of U.

An example of a unital in $PG(2, q^2)$, the Desarguesian projective plane of order q^2 , is the **classical unital** which consists of the absolute points and non-absolute lines of a unitary polarity. It is well known that the classical unital contains no **O'Nan configurations**, a configuration of four distinct lines meeting in six distinct points (a quadrilateral). In 1976 Buekenhout [4] proved the existence of unitals in all translation planes of dimension at most 2 over their kernel.

Let U be the classical unital in $PG(2, q^2)$ secant to ℓ_{∞} . We derive $PG(2, q^2)$ with respect to a derivation set disjoint from U. Let U' be the set of points of $\mathcal{H}(q^2)$,

Received by the editors November 1994

Communicated by J. Thas

AMS Mathematics Subject Classification : 51E20.

Keywords: Unitals, derivation, Hall planes.