Universal Properties of the Corrado Segre Embedding

Corrado Zanella

Abstract

Let $S(\Pi_0, \Pi_1)$ be the product of the projective spaces Π_0 and Π_1 , i.e. the semilinear space whose point set is the product of the point sets of Π_0 and Π_1 , and whose lines are all products of the kind $\{P_0\} \times g_1$ or $g_0 \times \{P_1\}$, where P_0 , P_1 are points and g_0 , g_1 are lines. An embedding $\chi : S(\Pi_0, \Pi_1) \to \Pi'$ is an injective mapping which maps the lines of $S(\Pi_0, \Pi_1)$ onto (whole) lines of Π' . The classical embedding is the Segre embedding, $\gamma_0 : S(\Pi_0, \Pi_1) \to \overline{\Pi}$. For each embedding χ , there exist an automorphism α of $S(\Pi_0, \Pi_1)$ and a linear morphism $\psi : \overline{\Pi} \to \Pi'$ (i.e. a composition of a projection with a collineation) such that $\chi = \alpha \gamma_0 \psi$. (Here $\alpha \gamma_0 \psi$ maps P onto $\psi(\gamma_0(\alpha(P))) =: P \alpha \gamma_0 \psi$.) As a consequence, every $S(\Pi_0, \Pi_1)$ which is embedded in a projective space is, up to projections, a Segre variety.

1 Introduction

Most classical varieties represent as points of a projective space some geometric objects. So such varieties are (projective) embeddings, which are somewhat canonical. For instance, take an *h*-flat ${}^{h}U$ (i.e. a subspace of dimension *h*) of an *n*-dimensional projective space Π over a commutative field *F*. ${}^{h}U$ can be associated with $\binom{n+1}{h+1}$ coordinates, the so-called *Plücker coordinates*, or *Grassmann coordinates*. They are defined up to a factor. So ${}^{h}U$ can be represented as a point of a $\binom{n+1}{h+1} - 1$ -dimensional projective space. We call *Plücker map* this representation. The image of

Bull. Belg. Math. Soc. 3 (1996), 65-79

Received by the editors March 1995 Communicated by J. Thas

AMS Mathematics Subject Classification : 51M35. Keywords : Segre variety – projective embedding – product space.