Measurability of linear operators in the Skorokhod topology

Wiebe R. Pestman

Abstract

It is proved that bounded linear operators on Banach spaces of "cadlag" functions are measurable with respect to the Borel σ -algebra associated with the Skorokhod topology.

1 Introduction and notation.

Throughout this paper \mathbb{C}^n is understood to be equipped with an inner product $\langle \cdot, \cdot \rangle$, defined by

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y}_i$$

for all $x = (x_1, \ldots, x_n)$ and $y = (y_1, \ldots, y_n)$ in \mathbb{C}^n . We shall write $|x| = \sqrt{\langle x, x \rangle}$ for all $x \in \mathbb{C}^n$.

A function $f: [0,1] \to \mathbb{C}^n$ is said to be a *cadlag function* ("continu à droite, limite à gauche") if for all $t \in [0,1]$ one has:

$$\lim_{s \downarrow t} f(s) = f(t+) = f(t) \quad \text{and} \quad \lim_{s \uparrow t} f(s) = f(t-) \quad \text{exists}$$

As can be proved in an elementary way, for every cadlag function $\ f \$ and every $\varepsilon > 0 \$ the set

$$\{t \in [0,1] : |f(t) - f(t-)| \ge \varepsilon\}$$

Received by the editors September 1994

Communicated by M. Hallin

AMS Mathematics Subject Classification : 28A20, 28A05, 46B26.

Bull. Belg. Math. Soc. 2 (1995), 381-388

Keywords: linear operator, measurability, Skorokhod topology.