When are induction and conduction functors isomorphic ?

Claudia Menini^{*} Constantin Nastasescu

Introduction

Let $R = \bigoplus_{g \in G} R_g$ be a *G*-graded ring. It is well known (see e.g. [D], [M₁], [N], [NRV], [NV]) that in the study of the connections that may be established between the categories *R*-gr of graded *R*-modules and *R*₁-mod (1 is the unit element of *G*), an important role is played by the following system of functors :

 $(-)_1 : R$ -gr $\to R_1$ -mod given by $M \mapsto M_1$, where $M = \bigoplus_{g \in G} M_g$ is a graded left R-module,

the induced functor, $\operatorname{Ind} : R_1 \operatorname{-mod} \to R \operatorname{-gr}$, which is defined as follows : if $N \in R_1 \operatorname{-mod}$, then $\operatorname{Ind}(N) = R \otimes_{R_1} N$ which has the *G*-grading given by $(R \otimes_{R_1} N)_g = R_g \otimes_{R_1} N, \forall g \in G$,

and the coinduced functor, Coind : R_1 -mod $\rightarrow R$ -gr, which is defined in the following way : if $N \in R_1$ -mod, then Coind $(N) = \bigoplus_{g \in G} Coind(N)_g$, where

Coind $(N)_g = \{ f \in \operatorname{Hom}_{R_1}(R_R, N) \mid f(R_h) = 0, \forall h \neq g^{-1} \}$.

(Note that if G is finite, then $\operatorname{Coind}(N) = \operatorname{Hom}_{R_1}(R_R, N)$).

It was shown in [N] that the functor Ind is a left adjoint of the functor $(-)_1$ and the unity of the adjunction $\sigma : \mathbf{1}_{R_1 - \text{mod}} \to (-)_1 \circ \text{Ind}$ is a functorial isomorphism, and that Coind is a right adjoint of the functor $(-)_1$ and the counity of this adjunction $\tau : (-)_1 \circ \text{Coind} \to \mathbf{1}_{R_1 - \text{mod}}$ is a functorial isomorphism.

If the ring R is a G-strongly graded ring (i.e. $R_g R_h = R_{gh} \quad \forall g, h \in G$) then the functors Ind and Coind are isomorphic. Thus the following question naturally

Bull. Belg. Math. Soc. 1 (1994),521-558

^{*}This paper was written while the first author was a member of G.N.S.A.G.A. of C.N.R. with a partial financial support from M.U.R.S.T.

Received by the editors December 1992

Communicated by A. Verschoren