Finite geometry for a generation

W. M. Kantor*

Dedicated to J. A. Thas on his fiftieth birthday

There are a number of results concerning the generation of a collineation group by two of its elements. A. A. Albert and J. Thompson [1] were the first to exhibit two elements generating the little projective group $\operatorname{PSL}(d, q)$ of $\operatorname{PG}(d-1, q)$ (for each d and q). According to a theorem of W. M. Kantor and A. Lubotzky [8], "almost every" pair of its elements generates $\operatorname{PSL}(d, q)$ as $q d \rightarrow \infty$ (asymptotically precise bounds on this probability are obtained in W. M. Kantor [7]). Given $1 \neq g \in$ $\operatorname{PSL}(d, q)$, the probability that $h \in \operatorname{PSL}(d, q)$ satisfies $\langle g, h\rangle=\operatorname{PSL}(d, q)$ was studied by R. M. Guralnick, W. M. Kantor and J. Saxl [3], and its behavior was found to depend on how $q d \rightarrow \infty$. Yet another variation that has been proposed is " $1 \frac{1}{2}$ "generation: if $1 \neq g \in \operatorname{PSL}(d, q)$ then some $h \in \operatorname{PSL}(d, q)$ satisfies $\langle g, h\rangle=\operatorname{PSL}(d, q)$. This note concerns a stronger version of this notion:
Theorem. For any $d \geq 4$ and any q, there is a conjugacy class \mathcal{C} of cyclic subgroups of $\operatorname{PSL}(d, q)$ such that, if $1 \neq g \in \operatorname{PSL}(d, q)$, then $\langle g, C\rangle=\operatorname{PSL}(d, q)$ for more than $\left(1-\frac{1}{q}-\frac{1}{q^{d-1}}\right)^{2}|\mathcal{C}|$ elements $C \in \mathcal{C}$. In particular, there are more than $0.4|\mathcal{C}|$ such elements if $q>2$.

While this does not look at all like a geometric theorem, the proof is entirely geometric. The same type of result holds when $d=2$ or 3 (and is easy), as well as for all the classical groups. The proof by W. M. Kantor [4] for the latter groups is still reasonably geometric, but is harder than the situation of the theorem.

Let V be the vector space underlying $\operatorname{PG}(d-1, q)$. The following is a simple observation concerning the set $\operatorname{Fix}(g)$ of fixed points (in $\operatorname{PG}(d-1, q)$) of a collineation g :

[^0]
[^0]: *Research supported in part by the NSF.
 Received by the editors in February 1994
 AMS Mathematics Subject Classification: Primary 51J05, Secondary 20F05
 Keywords: group generators, linear groups.

