Projective bundles

R. D. Baker J. M. N. Brown G. L. Ebert* J. C. Fisher

Dedicated to J. A. Thas on his fiftieth birthday

Abstract

A projective bundle in $\mathrm{PG}(2, q)$ is a collection of $q^{2}+q+1$ conics that mutually intersect in a single point and hence form another projective plane of order q. The purpose of this paper is to investigate the possibility of partitioning the $q^{5}-q^{2}$ conics of $\operatorname{PG}(2, q)$ into $q^{2}(q-1)$ disjoint projective bundles. As a by-product we obtain a multiplier theorem for perfect difference sets that generalizes a portion of Hall's theorem.

1 Introduction

There are $q^{5}-q^{2}=q^{2}(q-1)\left(q^{2}+q+1\right)$ nondegenerate conics in the desarguesian projective plane $\pi_{0}=\mathrm{PG}(2, q)$ of order $q[6, \mathrm{p} .140]$. Moreover, it is not hard to find (see $[1, \S 8],\left[5\right.$, p. 1085], or [8]) a collection of $q^{2}+q+1$ nondenegerate conics in π_{0} that mutually intersect in exactly one point, and hence serve as the "lines" of another projective plane on the points of π_{0}.

We will call such a collection of conics a projective bundle. The issue of concern for this paper is whether the $q^{5}-q^{2}$ conics of π_{0} can be partitioned into $q^{2}(q-1)$ projective bundles. We exhibit a collection of $q^{2}(q-1) / 2$ disjoint bundles for any odd prime power q, and show that a slightly larger number of disjoint bundles may be constructed for $q=3$. When q is even, a similar construction produces only $q-1$ disjoint bundles, although a computer-aided search for $q=4$ produced 30 disjoint bundles. It seems unlikely, however, that a complete partitioning of the conics of π_{0} into projective bundles is possible. We also discuss the connections of this problem

[^0]
[^0]: *The author acknowledges support from NSA grant MDA904-94-H-2033
 Received by the editors in February 1994
 AMS Mathematics Subject Classification: Primary 51E15, Secondary 05B25
 Keywords: bundles of conics, translation planes, perfect difference sets.

