Projective bundles

R. D. Baker J. M. N. Brown G. L. Ebert* J. C. Fisher

Dedicated to J. A. Thas on his fiftieth birthday

Abstract

A projective bundle in PG(2,q) is a collection of $q^2 + q + 1$ conics that mutually intersect in a single point and hence form another projective plane of order q. The purpose of this paper is to investigate the possibility of partitioning the $q^5 - q^2$ conics of PG(2,q) into $q^2(q-1)$ disjoint projective bundles. As a by-product we obtain a multiplier theorem for perfect difference sets that generalizes a portion of Hall's theorem.

1 Introduction

There are $q^5 - q^2 = q^2(q-1)(q^2+q+1)$ nondegenerate conics in the desarguesian projective plane $\pi_0 = PG(2,q)$ of order q [6, p. 140]. Moreover, it is not hard to find (see [1, §8], [5, p. 1085], or [8]) a collection of $q^2 + q + 1$ nondenegerate conics in π_0 that mutually intersect in exactly one point, and hence serve as the "lines" of another projective plane on the points of π_0 .

We will call such a collection of conics a projective bundle. The issue of concern for this paper is whether the q^5-q^2 conics of π_0 can be partitioned into $q^2(q-1)$ projective bundles. We exhibit a collection of $q^2(q-1)/2$ disjoint bundles for any odd prime power q, and show that a slightly larger number of disjoint bundles may be constructed for q=3. When q is even, a similar construction produces only q-1 disjoint bundles, although a computer-aided search for q=4 produced 30 disjoint bundles. It seems unlikely, however, that a complete partitioning of the conics of π_0 into projective bundles is possible. We also discuss the connections of this problem

 $^{^{*}\}mathrm{The}$ author acknowledges support from NSA grant MDA904-94-H-2033 Received by the editors in February 1994

AMS Mathematics Subject Classification: Primary 51E15, Secondary 05B25 Keywords: bundles of conics, translation planes, perfect difference sets.