# On Small Congruence Covers 

Dieter Jungnickel


#### Abstract

This note provides a group theoretic characterisation of small line covers of $P G(3, p)$ and, more generally, small congruence covers of $P G(2 t+1, p)$. It is shown that any group of square order $s^{2}$ which admits a cover by at most $s+p-1$ subgroups of order $s$ (where $p$ is the smallest prime divisor of $s$ ) is necessarily elementary abelian; hence any such cover is in fact geometric, that is, a congruence cover of a suitable projective geometry. We also show that the preceding bound is essentially best possible: There exists a congruence cover with $s+p+1$ components in a suitable non-elementary abelian group whenever $s$ is a proper power of a prime.


## 1 Introduction

Packing finite projective spaces with disjoint subspaces has for many years been a topic of considerable interest in Galois geometries. In particular, one studies partial $t$-spreads, that is, collections of pairwise disjoint $t$-dimensional subspaces in a space $P G(d, q)$. In spite of considerable effort, the fundamental question of determining the maximal size of a partial $t$-spread is still not settled in general; see Hirschfeld and Thas [12] for background. In contrast, the dual problem of $t$-covers, that is, minimal collections of $t$-dimensional subspaces covering $\operatorname{PG}(d, q)$ is much better understood. The following result is due to Beutelspacher [3] (who determined the lower bound) and Eisfeld [7] (who gave the structural characterisation for the case of equality).

Result 1.1. Let $\mathcal{C}$ be a t-cover of $P G(d, q)$, and write $d=a(t+1)+b$, where $0 \leq b \leq t$. Then

$$
|\mathcal{C}| \geq q^{b+1}\left(q^{(a-1)(t+1)}+\ldots+q^{2(t+1)}+q^{t+1}+1\right)+1
$$

[^0]
[^0]:    Received by the editors January 1998.
    Communicated by J. Thas.

