Nonexistence of global solutions to a class of nonlinear wave equations with dynamic boundary conditions

M. Guedda H. Labani

Abstract

We consider the problem $u_{tt} + \Delta^2 u + \delta u_t - \varphi(\int_{\Omega} |\nabla u|^2 dx) \Delta u = f(u)$, posed in $\Omega \times (0, T)$, with dynamical boundary conditions. Here $\Omega \subset \mathbb{R}^N$ is a an open smooth bounded domain. We prove, in certain conditions on f and φ that there is absence of global solutions. The method of proof relies on an argument of concavity.

1 Introduction and main result

The aim of the present note is to discuss some nonexistence result of global solutions to the problem

$$\begin{cases} u_{tt} + \Delta^2 u + \delta u_t - \varphi \left(\int_{\Omega} |\nabla u|^2 dx \right) \Delta u = f(u), & \text{on } \Omega \times (0, T), \\ u = 0, & \Delta u + p(\sigma) \frac{\partial u_t}{\partial \nu} = 0, & \text{in } \partial \Omega \times (0, T), \end{cases}$$
(1.1)

subject to the initial condition

$$u(x,0) = u_0(x), \quad u_t(x,0) = u_1(x),$$
 (1.2)

for any $x \in \Omega$, where $\Omega \subset \mathbb{R}^N$ is an open smooth bounded domain, $\delta > 0$, $\frac{\partial}{\partial \nu}$ is the normal derivative on $\partial \Omega$, $p \geq 0$ is a smooth function defined on $\partial \Omega$, f, φ, u_0 and u_1 are given functions.

Received by the editors February 2001. Communicated by J. Mawhin.