Fixed point results for compact maps on closed subsets of Fréchet spaces and applications to differential and integral equations

M. Frigon *

Abstract

In this paper, we establish fixed point results for compact maps $f: X \to \mathbb{E}$ defined on arbitrary closed subsets X of a Fréchet space \mathbb{E} . In particular, we obtain a continuation principle for suitable compact homotopy $h: X \times [0,1] \to \mathbb{E}$. Afterwards, those results are applied to differential equations and to Fredholm integral equations on the real line.

1 Introduction

It is well known (see [14]) that if $h: X \times [0, 1] \to \mathbb{E}$ is a compact map defined on X the closure of an open set of a locally convex space \mathbb{E} , and if $h(x, 0) \equiv \hat{x} \in int(X)$, then one of the following statements holds:

- (a) $h(\cdot, 1)$ has a fixed point;
- (b) there exist $\lambda \in (0, 1)$ and $x \in \partial X$ such that $x = h(x, \lambda)$.

In the particular case where \mathbb{E} is a Banach space, this important result was widely applied, notably to nonlinear differential equations. Unfortunately, very few applications were given in the case where \mathbb{E} is a locally convex space which is not normable. The problem is that in many potential applications, the appropriate set X to work with has empty interior, see for example [4].

Bull. Belg. Math. Soc. 9 (2002), 23-37

^{*}This work was partially supported by CRSNG Canada Received by the editors February 2001.

Communicated by J. Mawhin.

¹⁹⁹¹ Mathematics Subject Classification : 47H10,34A12,45B05.