On the Structure of the Group of Multiplicative Arithmetical Functions

Paul-Olivier Dehaye

Abstract

We analyze the structure of the group \mathbf{F}_0 , \star of non-zero multiplicative arithmetical functions, where \star is the usual Dirichlet product. In particular, we prove that \mathbf{F}_0 , \star is isomorphic to a complete direct product of certain subgroups of the multiplicative group of infinite upper-triangular matrices. We also show that the group \mathbf{F}_0 , \star is divisible.

1 Introduction

An arithmetical function, i.e. a function $f : \mathbb{N}_0 \to \mathbb{R}$, is called **multiplicative** if f(mn) = f(m)f(n) whenever (m, n) = 1. The Euler function ϕ and the Moebius function μ are classical examples of multiplicative functions. The arithmetical functions **0** and **I** defined for every $n \in \mathbb{N}_0$ by $\mathbf{0}(n) = 0$, $\mathbf{I}(n) = 0$ or 1 according as $n \neq 1$ or n = 1, are trivially multiplicative.

Let $\mathbf{F}_{\mathbf{0}}$ denote the set of all multiplicative functions different from **0**. Clearly, f(1) = 1 for every $f \in \mathbf{F}_{\mathbf{0}}$. The **Dirichlet product** (or **convolution**) of two arithmetical functions f and g is defined as follows: for every $n \in \mathbb{N}_0$,

$$(f \star g)(n) := \sum_{d|n} f(d)g(\frac{n}{d}).$$

For any given prime p, we will consider the following subset of \mathbf{F}_0 :

 $\mathbf{F}^p = \{ f \in \mathbf{F}_0 : f(n) = 0 \text{ for every } n > 1 \text{ not divisible by } p \}$

Bull. Belg. Math. Soc. 9 (2002), 15-21

Received by the editors November 2000.

Communicated by J. Doyen.