On the Structure of the Group of Multiplicative Arithmetical Functions

Paul-Olivier Dehaye

Abstract

We analyze the structure of the group $\mathbf{F}_{\mathbf{0}}$, of non-zero multiplicative arithmetical functions, where \star is the usual Dirichlet product. In particular, we prove that $\mathbf{F}_{\mathbf{0}}, \star$ is isomorphic to a complete direct product of certain subgroups of the multiplicative group of infinite upper-triangular matrices. We also show that the group $\mathbf{F}_{\mathbf{0}}, \star$ is divisible.

1 Introduction

An arithmetical function, i.e. a function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$, is called multiplicative if $f(m n)=f(m) f(n)$ whenever $(m, n)=1$. The Euler function ϕ and the Moebius function μ are classical examples of multiplicative functions. The arithmetical functions $\mathbf{0}$ and \mathbf{I} defined for every $n \in \mathbb{N}_{0}$ by $\mathbf{0}(n)=0, \mathbf{I}(n)=0$ or 1 according as $n \neq 1$ or $n=1$, are trivially multiplicative.

Let $\mathbf{F}_{\mathbf{0}}$ denote the set of all multiplicative functions different from $\mathbf{0}$. Clearly, $f(1)=1$ for every $f \in \mathbf{F}_{\mathbf{0}}$. The Dirichlet product (or convolution) of two arithmetical functions f and g is defined as follows: for every $n \in \mathbb{N}_{0}$,

$$
(f \star g)(n):=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right) .
$$

For any given prime p, we will consider the following subset of $\mathbf{F}_{\mathbf{0}}$:

$$
\mathbf{F}^{p}=\left\{f \in \mathbf{F}_{0}: f(n)=0 \text { for every } n>1 \text { not divisible by } p\right\}
$$

[^0]
[^0]: Received by the editors November 2000.
 Communicated by J. Doyen.

