Solutions to the mean curvature equation by fixed point methods

M. C. Mariani D. F. Rial

Abstract

We give conditions on the boundary data, in order to obtain at least one solution for the problem (1) below, with H a smooth function. Our motivation is a better understanding of the Plateau's problem for the prescribed mean curvature equation.

1 Introduction

We consider the Dirichlet problem in the unit disc $B = \{(u, v) \in \mathbf{R}^2; u^2 + v^2 < 1\}$ for a vector function $X : \overline{B} \longrightarrow \mathbf{R}^3$ which satisfies the equation of prescribed mean curvature

$$\begin{cases} \Delta X = 2H(X) X_u \wedge X_v \text{ in } B\\ X = g \text{ on } \partial B \end{cases}$$
(1)

where $X_u = \frac{\partial X}{\partial u}$, $X_v = \frac{\partial X}{\partial v}$, \wedge denotes the exterior product in \mathbf{R}^3 and $H : \mathbf{R}^3 \longrightarrow \mathbf{R}$ is a given continuous function. For $H \equiv H_0 \in \mathbf{R}$ and g non-constant with $0 < |H_0| ||g||_{\infty} < 1$ there are two variational solutions ([1], [3]). For H near H_0 in certain cases there exist also two solutions to the Dirichlet problem ([2], [6]). For H far from H_0 , under appropriated conditions on g and H it is possible to obtain more than two solutions ([4]).

Bull. Belg. Math. Soc. 4 (1997), 617-620

Received by the editors November 1996.

Communicated by J. Mawhin.

¹⁹⁹¹ Mathematics Subject Classification : Primary 35, Secondary 35J60.

Key words and phrases : Mean curvature, Dirichlet problem, Fixed points.