Some congruences concerning the Bell numbers

Anne Gertsch
Alain M. Robert

Abstract

In this Note we give elementary proofs - based on umbral calculus - of the most fundamental congruences satisfied by the Bell numbers and polynomials. In particular, we establish the conguences of Touchard, Comtet and Radoux as well as a (new) supercongruence conjectured by M. Zuber.

1 Some polynomial congruences

In this note, p will always denote a fixed prime number and A will either be the ring \mathbf{Z} of integers or the ring \mathbf{Z}_{p} of p-adic integers. Let $f(x), g(x) \in A[x]$ be two polynomials in one variable x and coefficients in the ring A.

Lemma 1.1.- If $f(x) \equiv g(x) \bmod p^{\nu} A[x]$ for some integer $\nu \geq 1$, then

$$
f(x)^{p} \equiv g(x)^{p} \bmod p^{\nu+1} A[x] .
$$

Proof.- By hypothesis

$$
f(x)=g(x)+p^{\nu} h(x) \quad \text { where } h(x) \in A[x] .
$$

Hence

$$
f(x)^{p}=\left(g(x)+p^{\nu} h(x)\right)^{p}=g(x)^{p}+p^{\nu+1} r(x) \quad \text { with } r(x) \in A[x] \text {, }
$$

and

$$
f(x)^{p} \equiv g(x)^{p} \bmod p^{\nu+1} A[x] .
$$

Received by the editors November 1995.
Communicated by Y. Félix.
1991 Mathematics Subject Classification : Primary 11-B-73, 05-A-40 Secondary 11-P-83.
Key words and phrases : Bell polynomials, congruences, umbral calculus.

