A Note on Tensor Products of Polar Spaces Over Finite Fields.

Bruce N. Cooperstein

Abstract

A symplectic or orthogonal space admitting a hyperbolic basis over a finite field is tensored with its Galois conjugates to obtain a symplectic or orthogonal space over a smaller field. A mapping between these spaces is defined which takes absolute points to absolute points. It is shown that caps go to caps. Combined with a result of Dye's one obtains a simple proof of a result due to Blokhuis and Moorehouse that ovoids do not exist on hyperbolic quadrics in dimension ten over a field of characteristic two.

Let k = GF(q), q a prime power, and $K = GF(q^m)$ for some positive integer m. Let $V = \langle x_1, x_2 \rangle \oplus \langle x_3, x_4 \rangle \oplus \ldots \oplus \langle x_{2n-1}, x_{2n} \rangle$ be a vector space over K. Let τ be the automorphism of K given by $\alpha^{\tau} = \alpha^q$ so that $\langle \tau \rangle = T = Gal(K/k)$. For each $\sigma \in T$ let V^{σ} be a vector space with basis $x_1^{\sigma}, x_2^{\sigma}, \ldots, x_{2n}^{\sigma}$. Set $M = V \otimes V^{\tau} \otimes V^{\tau^2} \otimes \ldots \otimes V^{\tau^{m-1}}$. This is a space of dimension $(2n)^m$ over K. Let $\mathfrak{S} = \{1, 2, \ldots, 2n\}^m$ and for $I = (i_1, i_1, \ldots, i_m) \in \mathfrak{S}$, set $x_I = x_{i_1} \otimes x_{i_2}^{\tau} \otimes x_{i_3}^{\tau^2} \otimes \ldots \otimes x_{i_m}^{\tau^{m-1}}$. Then $B = \{x_I : I \in \mathfrak{S}\}$, is a basis for M.

We next define a semilinear action of τ on M as follows: For $I = (i_1, i_1, \ldots, i_m) \in \mathfrak{S}$, set $I^{\tau} = (i_{m-1}, i_0, i_1, \ldots, i_{m-2})$ and then for $a \in K, I \in \{1, 2, \ldots, 2n\}^m$ define $(ax_I)^{\tau} = a^{\tau}x_{I^{\tau}}$ and extend by additivity to all of M. Denote by M^T the set of all vectors of M fixed under this action. This is a vector space over k.

Proposition 1: As a vector space over k, $dim_k M^T = (2n)^m$.

Proof: Let $\Omega_1, \Omega_2, \ldots, \Omega_t$ be the orbits of T in B. Then M^T is the direct sum of the fixed points of τ in $\langle \Omega_i \rangle_K$ for $i = 1, 2, \ldots, t$. Let $\Omega = \Omega_i$ for some $i, 1 \leq i \leq t$ and let $x = x_I$ be in Ω , assume that $\langle \tau^l \rangle$ is the stablizer of x_I in T and set

Bull. Belg. Math. Soc. 2 (1995), 253-257

Received by the editors May 1994

Communicated by J. Thas

Keywords : Orthogonal space, hyperbolic basis, tensor product, caps, ovoids.