Weak convergence in spaces of measures and operators

Mohsen Alimohammady

Abstract

J. K. Brooks and P. W. Lewis have established that if E and E^* have RNP, then in $M(\Sigma, E)$, m_n converges weakly to m if and only if $m_n(A)$ converges weakly to m(A) for each $A \in \Sigma$. Assuming the existence of a special kind of lifting, N. Randrianantoanina and E. Saab have shown an analogous result if E is a dual space. Here we show that for the space $M(\mathcal{P}(\mathbb{N}), E)$ where E^* is a Grothendieck space or E is a Mazur space, this kind of weak convergence is valid. Also some applications for subspaces of L(E, F) similar to the results of N. Kalton and W. Ruess are given.

1 Introduction

Let E and F be two infinite dimensional Banach spaces. By L(E, F) (resp. K(E, F)) we denote the Banach space of all bounded linear (resp. compact linear) operators from E to F. The ϵ -product $E\epsilon F$ is the operator space $K_{w^*}(E^*, F)$ of compact and weak*-weak continuous linear operators from E^* to F, endowed with the usual operator norm. Let Σ be a σ -algebra on a non-empty set S, then $M(\Sigma, E)$ (resp. $ca(\Sigma, E)$) denotes the Banach space of all bounded countably additive vector measures endowed with the variation norm (resp. semivariation norm). The space E is said to be Grothendieck if weak* and weak sequential convergence in E^* coincide; E is called Mazur if any weak*-sequentially continuous linear functional on E^* lies in E. For unexplained notations we refer the reader to [4], [5], [6].

Received by the editors September 1997.

Communicated by J. Schmets.

1991 Mathematics Subject Classification: 46B20, 46E27, 47D15.

Key words and phrases: Grothendieck spaces, spaces of measures, spaces of operators.