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1 Introduction

Let PG(N, q) be the projective space of dimension N over the finite field GF (q). A
k–cap K in PG(N, q) is a set of k points, no three of which are collinear [14], and
a k–cap is called complete if it is maximal with respect to set–theoretic inclusion.
The maximum value of k for which there exists a k–cap in PG(N, q) is denoted
by m2(N, q) [14]. This number m2(N, q) is only known, for arbitrary q, when N ∈
{2, 3}. Namely, m2(2, q) = q + 1 if q is odd, m2(2, q) = q + 2 if q is even, and
m2(3, q) = q2 + 1, q > 2. With respect to the other values of m2(N, q), apart
from m2(N, 2) = 2N , m2(4, 3) = 20, m2(5, 3) = 56 and m2(4, 4) = 41 [2], only upper
bounds are known. Finding the exact value for m2(N, q), N ≥ 4 and constructing an
m2(N, q)–cap seems to be a very hard problem. In the last few years there has been
a certain interest in caps embedded in the Klein quadric K of PG(5, q) considered
as ambient space, and the main purpose is to find lower and upper bounds for a
complete cap embedded in K. In this direction, Blokhuis and Sziklai [3] proved
a lower bound for the smallest complete cap of the Klein quadric. Precisely such
a cap has size at least const·q12/7. In 1997, Cossidente, Hirschfeld and Storme [8]
constructed a cap of size 2q2 + q + 1 of K obtained by gluing together two suitable
Veronese surfaces. If we assume q even, it is always possible to extend such a cap
to a complete 2(q2 + q + 1)–cap of K [5]. This seems to be the unique known
example of smallest complete cap of K. On the other hand Glynn [12] proved (using
the Klein correspondence between lines of PG(3, q) and points of PG(5, q)) that
any line orbit of a Singer cyclic group of PG(3, q) corresponds to a cap of size
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