A note on nonexistence of global solutions to a nonlinear integral equation

M. Guedda M. Kirane

Abstract

In this paper we study the Cauchy problem for the integral equation

\[u_t = (-\Delta)^\beta u + h(t)u^{1+\alpha} \quad \text{in } \mathbb{R}^N \times (0, T), \]

where \(0 < \beta \leq 2 \). We obtain some extension of results of Fujita who considered the case \(\beta = 2 \) and \(h \equiv 1 \).

1 Introduction

This article deals with the blow-up of positive solutions to the Cauchy problem for the integrodifferential equation

\[u_t = (-\Delta)^\beta u + h(t)u^{1+\alpha} \quad \text{in } \mathbb{R}^N \times (0, T), \]

\[u(x, 0) = u_0(x) \geq 0 \quad \text{for } x \in \mathbb{R}^N, \]

where \((-\Delta)^\beta\), for \(0 < \beta \leq 2 \), denote the fractional power of the operator \(-\Delta\). It is assumed that \(u_0 \) is a continuous function defined on \(\mathbb{R}^N \) and \(\alpha \) is a positive constant. The function \(h \) satisfies

\[h_1) \quad h \in C[0, \infty), h \geq 0, \]

\[h_2) \quad c_0 t^\sigma \leq h(t) \leq c_1 t^\sigma \quad \text{for sufficiently large } t, \quad \text{where } c_0, c_1 > 0 \quad \text{and } \sigma > -1 \text{ are constants.} \]