Extremal Kähler $\mathcal{A}C^{\perp}$ -surfaces

Włodzimierz Jelonek

Abstract

The aim of this paper is to give an example of a Kähler extremal metric with harmonic anti-self-dual Weyl tensor on the Hirzebruch surface F_1 .

Introduction.

It is known that self-dual Kähler 4-manifolds (M, g, J) are Bochner-flat. M. Matsumoto and S. Tanno proved [M-T] that every Bochner flat Kähler manifold satisfies the condition

$$\nabla_X \rho(Y, Z) = \frac{1}{(2\dim M + 4)} (g(X, Y)Z\tau + g(X, Z)Y\tau + 2g(Y, Z)X\tau \quad (*)$$
$$-g(JX, Y)(JZ)\tau - g(JX, Z)(JY)\tau),$$

where τ is the scalar curvature of (M, g). Consequently, Ricci tensor ρ of any Kähler Bochner-flat manifold satisfies the condition

$$\nabla_X \rho(X, X) = \frac{2}{n+2} X \tau g(X, X), \qquad (**)$$

where τ is the scalar curvature of (M, g) and $n = \dim M$. This property was studied by A. Gray in [G]. A. Gray called Riemannian manifolds satisfying (**) the $\mathcal{A}C^{\perp}$ manifolds. In [J-1] we showed that every Kähler surface has a harmonic anti-self-dual part W^- of the Weyl tensor W (i.e. such that $\delta W^- = 0$) if and only if it is an $\mathcal{A}C^{\perp}$ manifold. We also proved that a Kähler manifold is an $\mathcal{A}C^{\perp}$ -manifold if and only

Bull. Belg. Math. Soc. 9 (2002), 561-571

Received by the editors March 2001.

Communicated by L. Vanhecke.

¹⁹⁹¹ Mathematics Subject Classification : 53C25,53C55.

Key words and phrases : Extremal Kähler surface; Harmonic anti-self-dual Weyl tensor; Hirzebruch surfaces.