Retracting spreads

Norman L. Johnson

Abstract

The concept of spread-retraction is introduced by which certain spreads in PG(4m+1, q) or PG(4m-1, q) may be 'retracted' to either Baer subgeometry partitions of $PG(2m, q^2)$ or to mixed partitions of $PG(2m-1, q^2)$ respectively. This characterizes the spreads produced by such partitions abstractly and furthermore allows a vast number of new mixed partitions to be recognized.

1 Introduction

In this article, we shall be discussing partitions of the points of finite projective geometries Σ over $GF(q^2)$. When Σ is isomorphic to $PG(2m, q^2)$, the partition components are Baer subgeometries isomorphic to PG(2m, q). When Σ is isomorphic to $PG(2n-1, q^2)$, it is possible to have a so-called 'mixed' partition of $\beta PG(n-1, q^2)$'s and $\alpha PG(2n-1, q)$'s. The configuration is such that $\alpha(q+1) + \beta = q^{2n} + 1$.

The interest in such partitions lies in the fact they may be used to construct spreads and hence translation planes. Baer subgeometry partitions produce translation planes of order q^{2m+1} where mixed partitions produce translation planes of order q^{2n} . These constructions are applications of the theory of Segré varieties and are given in Hirschfeld and Thas [8], p. 206. In particular, all Baer subgeometries produce GF(q)-reguli in the associated spread. When the partition is a Baer subgeometry partition, the spread is a union of mutually disjoint GF(q)-reguli. Furthermore, mixed partitions of $PG(2m-1,q^2)$ by $PG(m-1,q^2)$'s and PG(2m-1,q)'s produce spreads in PG(4m-1,q) which contain $d \ GF(q)$ -reguli provided there are $d \ PG(2m-1,q)$'s in the mixed partition.

Received by the editors September 2000.

Bull. Belg. Math. Soc. 8 (2001), 505-524

Communicated by J. Thas.

¹⁹⁹¹ Mathematics Subject Classification : 51 B10.

Key words and phrases : Spreads, subgeometry partitions.