ON THE DENSITIES OF SOME SUBSETS OF INTEGERS

Florian Luca

In this note, we prove two conjectures concerning densities of subsets of positive integers suggested in [1] and [2], respectively. Throughout this paper, we use p and q for prime numbers and x for a large positive real number. If $\mathcal{A} \subset \mathbb{N}$ is a subset of the positive integers, we write $\mathcal{A}(x)=\mathcal{A} \cap[1, x]$. We use the Vinogradov symbols \ll and $>$, and the Landau symbols O and o with their usual meanings. Namely, we say that $f(x) \ll g(x)$, or that $f(x)=O(g(x))$, if the inequality $|f(x)|<c g(x)$ holds with some positive constant c for all sufficiently large x. The notation $g(x) \gg f(x)$ is equivalent to $f(x) \ll g(x)$, while $f(x)=o(g(x))$ means that $f(x) / g(x)$ tends to zero when x tends to infinity. We use $\log x$ for the natural logarithm of x.

1. Sigma-Primes. Following [1], a positive integer n is called a sigma-prime if n and $\sigma(n)$ are coprimes, where $\sigma(n)$ is the sum of the divisors of n. Let $\mathcal{S P}$ be the set of all sigma-primes. It was conjectured in [1] that $\mathcal{S P}$ is of asymptotic density zero. Here, we prove this conjecture.

Theorem 1. The inequality

$$
\# \mathcal{S P}(x) \ll \frac{x}{\log \log \log x}
$$

holds for all $x>e^{e}$.
Proof. Let x be a large positive real number. Lemma 4 in [5] asserts that there exists an absolute constant c_{1} such that $\sigma(n)$ is divisible by all primes

$$
p<y:=c_{1} \frac{\log \log x}{\log \log \log x}
$$

for all $n<x$ except for a subset of such n of cardinality $O(x / \log \log \log x)$. Thus,

$$
\begin{equation*}
\# \mathcal{S P}(x) \leq \#\{n \leq x: \operatorname{gcd}(n, p)=1 \text { for all } p \leq y\}+O\left(\frac{x}{\log \log \log x}\right) \tag{1}
\end{equation*}
$$

