SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.

173. Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Show that

$$\sum_{n=1}^{\infty} \frac{x_n}{x_{n-1}} = \frac{7}{2}$$

provided

$$x_{n-1}(x_{n-2}^2 + x_{n-1}x_{n-3}) - 6x_{n-3}(x_{n-1}^2 - x_nx_{n-2}) = 0, \quad n \ge 3,$$

and $x_0 = x_1 = x_2 = 1.$

Solution by Panagiotis T. Krasopoulos, Athens, Greece. First, let us observe that from the statement of the problem it is assumed implicitly that $x_k \neq 0$ for any $k \geq 0$. This fact will be proved in the process of the following proof.

Let us assume that $x_k \neq 0$ for any $0 \leq k \leq n-1$. We divide the given equation by the product $x_{n-1}x_{n-2}x_{n-3}$ and we define $a_n = x_n/x_{n-1}$, so we obtain

 $a_{n-2} + a_{n-1} - 6a_{n-1} + 6a_n = 0$ if and only if $6a_n - 5a_{n-1} + a_{n-2} = 0$,

where $n \geq 3$ and $a_1 = a_2 = 1$. This is a linear homogeneous difference equation with constant coefficients and can be solved directly by using its characteristic equation. After some algebraic calculations we have

$$a_n = 8\left(\frac{1}{2}\right)^n - 9\left(\frac{1}{3}\right)^n$$
 for $n \ge 1$.

It can easily be seen that $\frac{8}{9} > \left(\frac{2}{3}\right)^n$ for $n \ge 1$ and so $a_n > 0$. Since $a_n > 0$ and $x_0 = x_1 = x_2 = 1 > 0$, by induction we obtain that $x_k > 0$ for any

VOLUME 23, NUMBER 1

88