THE FUNDAMENTAL THEOREM OF ALGEBRA PROOFS VIA "THE CREEPING LEMMA"

James E. Joseph and Myung H. Kwack

Let \mathbb{C} be the complex plane. A complex polynomial function is a function $P: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
P(z)=\sum_{k=0}^{n} a_{n-k} z^{n-k}
$$

where $a_{0}, \cdots, a_{n} \in \mathbb{C}$. The Fundamental Theorem of Algebra states that a nonconstant complex polynomial function has a zero. Over the years, a number of proofs of this theorem have been discovered [1]. In this note, the so-called "Creeping Lemma" [3] is used to present two elementary proofs of the Fundamental Theorem. The proofs can be presented in a first analysis course (or advanced calculus course) as a nice application of diffeomorphism and the concept of least upper bound.

It is known that a complex polynomial function P is a closed function, i.e. that $P(A)$ is a closed subset of \mathbb{C} when A is a closed subset of \mathbb{C}. The proof for non-constant P combines the Bolzano-Weierstrass property of \mathbb{C} with the continuity of P and the observation that $|P(z)|$ gets arbitrarily large as $|z|$ gets arbitrarily large [2].

Here the "Creeping Lemma" is applied
(i) to provide a direct proof of The Fundamental Theorem of Algebra, and
(ii) to prove that a non-constant complex polynomial function is an open function, so $P(\mathbb{C})=\mathbb{C}$, since $P(\mathbb{C})$ is a nonempty, closed, and open subset of the connected space \mathbb{C} (another proof of the Fundamental Theorem of Algebra).

In the sequel, the set of critical points of a complex polynomial P, $\left\{z \in \mathbb{C}: P^{\prime}(z)=0\right\}$, will be denoted by M.

Theorem 1. The Fundamental Theorem of Algebra: A non-constant complex polynomial function has a zero.

Proof. The set of critical points, M and its image $P(M)$ are both finite. Let $p=P(a)$ with $a \notin M$. Let $\sigma:[0,1] \rightarrow \mathbb{C}$ be a curve such that $\sigma(0)=p, \sigma(1)=O$, and $\sigma([0,1)) \subset \mathbb{C}-P(M)$, an open connected set. It will be enough to show that there is a curve $\tilde{\sigma}:[0,1] \rightarrow \mathbb{C}$ with $\tilde{\sigma}(0)=a$ and $P \circ \tilde{\sigma}=\sigma$.

Choose a neighborhood U of a such that $P: U \rightarrow P(U)$ is a diffeomorphism with inverse g. Then, $\tilde{\sigma}=g \circ \sigma$ is defined

