SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
149. [2004, 129] Proposed by Joe Howard, Portales, New Mexico and Les Reid, Southwest Missouri State University, Springfield, Missouri.

Let A, B, C be the angles of a triangle. Show

$$
\begin{aligned}
3+\cos A+\cos B+\cos C & \geq 2(\sin A \sin B+\sin B \sin C+\sin C \sin A) \\
& \geq 9(\cos A+\cos B+\cos C-1)
\end{aligned}
$$

with equality if and only if the triangle is equilateral.
Solution by the proposers. Let r, R, and s denote the inradius, circumradius, and semiperimeter, respectively. Euler's inequality ($R \geq 2 r$) is well known. The following can be found in Crux Mathematicorum, [2029] 22 (3) (1996), p. 130 and on pages 45 and 55-56 of D. S. Mitrinović, J. E. Pečurić, and V. Volenec, Recent Advances in Geometric Inequalities, Kluwer Academic Pub., 1989.

$$
\begin{align*}
\sin A \sin B+\sin B \sin C+\sin C \sin A & =\frac{s^{2}+4 R r+r^{2}}{4 R^{2}} \tag{1}\\
\cos A+\cos B+\cos C & =1+\frac{r}{R} \tag{2}\\
4 R^{2}+4 R r+3 r^{2} \geq s^{2} & \geq 16 R r-5 r^{2} \tag{3}
\end{align*}
$$

Using (1) and (2), the given inequality is equivalent to

$$
4+\frac{r}{R} \geq 2\left(\frac{s^{2}+4 R r+r^{2}}{4 R^{2}}\right) \geq 9\left(\frac{r}{R}\right)
$$

which is equivalent to

$$
8 R^{2}-2 R r-r^{2} \geq s^{2} \geq 14 R r-r^{2}
$$

