# RETURNS TO THE ORIGIN FOR RANDOM WALKS ON $\mathbb{Z}$ REVISITED 

Helmut Prodinger

Chrysafi and Bradley [1] considered symmetric random walks, defined as follows: let $X_{k}, k=1,2, \ldots$ be independent and identically distributed random variables with $\mathbb{P}\left\{X_{k}=1\right\}=\mathbb{P}\left\{X_{k}=-1\right\}=\frac{1}{2}$. Then

$$
S_{m}=\sum_{k=1}^{m} X_{k} \quad \text { with } \quad S_{0}=0
$$

is a simple random walk starting at 0 . The authors considered only walks of even length $m=2 n$ and were interested in the random variable $R=R_{n}$, defined to be the number of returns to the origin in a walk of length $2 n$, i.e., the number of times $S_{i}=0$ happens, for $i=1, \ldots, 2 n$. They computed moments up to $\mathbb{E}\left[R^{6}\right]$ and asked for a closed formula for $\mathbb{E}\left[R^{k}\right]$ and also whether $\mathbb{E}\left[R^{k}\right] \sim c_{k} n^{k / 2}$ holds.

The answers to these questions can be found in [4] as opposed to [1]. There, the factorial moments $\mathbb{E}\left[R^{k}\right]$ were computed. We state the formula only for even $n$ :

$$
\mathbb{E}\left[R_{n}^{k}\right]=k!\sum_{i=0}^{k}(-1)^{k-i}\binom{k}{i}\binom{\frac{i}{2}+n}{n}
$$

Ordinary moments can be recovered from these formulae as linear combinations with Stirling numbers of the second kind (Stirling subset numbers), see [3].

$$
\mathbb{E}\left[R_{n}^{k}\right]=\sum_{i=0}^{k}\left\{\begin{array}{l}
k \\
i
\end{array}\right\} \mathbb{E}\left[R_{n}^{i}\right]
$$

To answer the asymptotics question, we use generating functions

$$
\mathbb{E}\left[R_{n}^{k}\right]=4^{-n} k!\left[z^{n}\right] \frac{(1-\sqrt{1-4 z})^{k}}{(1-4 z)^{1+\frac{k}{2}}}
$$

