## SOME REMARKS ON THE SUM OF AN OLD SERIES

Rasul A. Khan

In this note we use some combinatorial identities to derive a formula for the sum of the series

$$
S(p)=\sum_{n=0}^{\infty}(m+n+1)^{p}\binom{n+m}{m} x^{n}, \quad|x|<1,
$$

in the form $P(x) /(1-x)^{m+p+1}$, where $P(x)$ is a polynomial of degree $p-1$ with known coefficients $a_{j}, 0 \leq j \leq p-1$. When specialized for $m=0$, the resulting sum gives a formula for

$$
\sum_{n=1}^{\infty} n^{p} x^{n} \quad(|x|<1)
$$

The general formula also provides an alternative method for determining the moments of a negative binomial distribution. Conversely, the negative binomial distribution can be used to find a recursive formula for the sum of the above series $S(p)$.

1. A Combinatorial Identity. In what follows we write

$$
x_{(r)}=x(x-1)(x-2) \cdots(x-r+1)
$$

for any real $x$ and positive integer $r$, and in particular $x_{(r)}=x!/(x-r)!$ if $x$ is also a positive integer, and $x_{(0)}=1$, etc. Also, for a function $\psi(t), \psi^{(k)}(a)$ denotes the $k$ th derivative evaluated at $a$. The identities in Lemma 1 can be found in disguised forms in Feller [2]. These identities in turn imply the main identity in Lemma 2. A generating function method is used for their proofs for the sake of completeness.

