COMPLEMENTARY INTEGER SEQUENCES THAT HAVE ONLY INITIAL COMMON MOMENTS

Hang Chen

The $k^{\text {th }}$ moment, $m_{k}(R)$, of a nonnegative integer sequence $R=\left\{r_{i}\right\}_{1}^{n}$ of length n is defined to be the sum of the $k^{t h}$ powers of the elements, that is,

$$
m_{k}(R)=\sum_{i=1}^{n} r_{i}^{k}
$$

It is convenient to assume that the $0^{\text {th }}$ power of any number is 1 . Two equallength sequences R and Q of nonnegative integers are said to share the $k^{t h}$ moment if $m_{k}(R)=m_{k}(Q)$. The common moment set of R and Q is $P=$ $\left\{k \mid m_{k}(R)=m_{k}(Q)\right\}$. The initial interval of the common moment set is defined to be $P_{0}=\{0,1,2, \ldots, m(R, Q)\}$, where $m(R, Q)=\max \left\{j \mid m_{k}(R)=\right.$ $\left.m_{k}(Q), 0 \leq k \leq j\right\}$. Therefore, the common moment set is $P=P_{0} \cup A$, where $A \subset\{m(R, Q)+2, m(R, Q)+3, \ldots\}$. If R and Q are identical sequences, we interpret $p=\infty$. If R and Q are two distinct sequences, the common moment set P is a finite set. We shall discuss nonidentical sequences in this paper.

Chen, Erdős, and Schwenk [2] studied the comment moment sets for the score sequences of complementary tournaments and showed that such a common moment set is $P=\{0,1,2, \ldots, 2 p\} \cup A$, where $p \geq 0$ and $A \subset\{2 p+3,2 p+4, \ldots\}$. Chen [1] provided parallel results for degree sequences of complementary graphs.

Two nonnegative integer sequences $R=\left\{r_{i}\right\}_{1}^{n}$ and $Q=\left\{q_{i}\right\}_{1}^{n}$ are said to be complementary if $r_{i}+q_{i}$ is a constant for $i=1,2, \ldots, n$. In this paper, we show that the initial interval of the common moment set for complementary sequences is $P=$ $\{0,1,2, \ldots, 2 p\}$, that is, $m(R, Q)=2 p$ for some $p \geq 0$. We present complementary integer sequences that share only the initial moments. For any given integer $p \geq 0$, we shall construct complementary integer sequences of length 4^{p} that have the common moment set $P=\{0,1,2, \ldots, 2 p\}$.

For two sequences of length n both arranged in nonincreasing order, we say that $R=\left\{r_{i}\right\}_{1}^{n}$ dominates $Q=\left\{q_{i}\right\}_{1}^{n}$ if there is an index i_{0} such that $r_{i_{0}}>q_{i_{0}}$ and $r_{i}=q_{i}$ for $i<i_{0}$. For example, $R=\{6,5,3\}$ dominates $Q=\{6,4,4\}$. For distinct sequences, one must always dominate the other.

