SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
145. [2004, 58] Proposed by José Luis Díaz-Barrero, Universidad Politècnica de Cataluña, Barcelona, Spain.

Let F_{n} denote the nth Fibonacci number $\left(F_{0}=0, F_{1}=1\right.$, and $F_{n}=F_{n-1}+$ F_{n-2} for $n \geq 2$) and let L_{n} denote the nth Lucas number ($L_{0}=2, L_{1}=1$, and $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$). Prove that

$$
F_{n+1}>\frac{1}{3}\left(\frac{L_{n}^{L_{n}}}{F_{n}^{F_{n}}}\right)^{\frac{1}{L_{n}-F_{n}}}
$$

holds for all positive integer $n \geq 2$.
Solution by the proposer. It is well known [1] that for a positive integrable function defined on the interval $[a, b]$, the integral analogue of the AM-GM inequality is given by

$$
\begin{equation*}
A(f)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \geq \exp \left(\frac{1}{b-a} \int_{a}^{b} \ln f(x) d x\right)=G(f) \tag{1}
\end{equation*}
$$

Setting $f(x)=x, a=F_{n}$, and $b=L_{n}$ into (1), yields

$$
\frac{1}{L_{n}-F_{n}} \int_{F_{n}}^{L_{n}} x d x \geq \exp \left(\frac{1}{L_{n}-F_{n}} \int_{F_{n}}^{L_{n}} \ln x d x\right)
$$

Note that for all $n \geq 2, L_{n}-F_{n}>0$. Evaluating the preceding integrals and after simplification, we obtain

$$
\begin{align*}
\frac{F_{n}+L_{n}}{2} & \geq \exp \left(\frac{1}{L_{n}-F_{n}} \ln \left(\frac{L_{n}^{L_{n}}}{F_{n}^{F_{n}}}\right)-1\right) \\
& =\exp \left(\ln \left[\frac{1}{e}\left(\frac{L_{n}^{L_{n}}}{F_{n}^{F_{n}}}\right)\right]^{\frac{1}{L_{n}-F_{n}}}\right) \tag{2}
\end{align*}
$$

