SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.

145. [2004, 58] Proposed by José Luis Díaz-Barrero, Universidad Politècnica de Cataluña, Barcelona, Spain.

Let F_n denote the *n*th Fibonacci number $(F_0 = 0, F_1 = 1, \text{ and } F_n = F_{n-1} + F_{n-2} \text{ for } n \geq 2)$ and let L_n denote the *n*th Lucas number $(L_0 = 2, L_1 = 1, \text{ and } L_n = L_{n-1} + L_{n-2} \text{ for } n \geq 2)$. Prove that

$$F_{n+1} > \frac{1}{3} \left(\frac{L_n^{L_n}}{F_n^{F_n}} \right)^{\frac{1}{L_n - F_n}}$$

holds for all positive integer $n \geq 2$.

Solution by the proposer. It is well known [1] that for a positive integrable function defined on the interval [a,b], the integral analogue of the AM-GM inequality is given by

$$A(f) = \frac{1}{b-a} \int_a^b f(x) dx \ge \exp\left(\frac{1}{b-a} \int_a^b \ln f(x) dx\right) = G(f). \tag{1}$$

Setting f(x) = x, $a = F_n$, and $b = L_n$ into (1), yields

$$\frac{1}{L_n - F_n} \int_{F_n}^{L_n} x \, dx \ge \exp\left(\frac{1}{L_n - F_n} \int_{F_n}^{L_n} \ln x \, dx\right).$$

Note that for all $n \ge 2$, $L_n - F_n > 0$. Evaluating the preceding integrals and after simplification, we obtain

$$\frac{F_n + L_n}{2} \ge \exp\left(\frac{1}{L_n - F_n} \ln\left(\frac{L_n^{L_n}}{F_n^{F_n}}\right) - 1\right)$$

$$= \exp\left(\ln\left[\frac{1}{e}\left(\frac{L_n^{L_n}}{F_n^{F_n}}\right)\right]^{\frac{1}{L_n - F_n}}\right). \tag{2}$$