ALPHA-DISTANCE - A GENERALIZATION OF CHINESE CHECKER DISTANCE AND TAXICAB DISTANCE

Songlin Tian

The Euclidean distance measures the shortest distance between two points. The taxicab distance [2] measures the distance between two points when only moves along axis-directions are permitted. If, in addition, the diagonal moves are also permitted, the distance between A and B is given by the Chinese checker distance [1]. Let $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be two points in \mathbb{R}^{2}. Denote

$$
\Delta_{A B}=\max \left\{\left|x_{2}-x_{1}\right|,\left|y_{2}-y_{1}\right|\right\} \quad \text { and } \quad \delta_{A B}=\min \left\{\left|x_{2}-x_{1}\right|,\left|y_{2}-y_{1}\right|\right\} .
$$

The Euclidean distance between A and B is

$$
d(A, B)=\sqrt{\Delta_{A B}^{2}+\delta_{A B}^{2}}
$$

The taxicab distance between A and B is

$$
d_{T}(A, B)=\Delta_{A B}+\delta_{A B}
$$

The Chinese checker distance between A and B is

$$
d_{C}(A, B)=\Delta_{A B}+(\sqrt{2}-1) \delta_{A B}
$$

In this paper we introduce a family of distances which include both Chinese checker distance and taxicab distance as special cases. For each $\alpha \in[0, \pi / 4]$, we define the α-distance between A and B by

$$
d_{\alpha}(A, B)=\Delta_{A B}+(\sec \alpha-\tan \alpha) \delta_{A B}
$$

Then, $d_{0}(A, B)=d_{T}(A, B)$ and $d_{\pi / 4}(A, B)=d_{C}(A, B)$. Observe that if $\delta_{A B}>0$, then

$$
d_{C}(A, B)<d_{\alpha}(A, B)<d_{T}(A, B) \text { for all } \alpha \in(0, \pi / 4)
$$

When $\delta_{A B}=0, A$ and B lie on a horizontal or vertical line, and it follows that $d_{C}(A, B)=d_{\alpha}(A, B)=d_{T}(A, B)=d(A, B)$ for all $\alpha \in[0, \pi / 4]$.

Clearly, $d_{\alpha}(A, B)=0$ if and only if $A=B$, and $d_{\alpha}(A, B)=d_{\alpha}(B, A)$ for all $A, B \in \mathbb{R}^{2}$. The main result of this paper will be that

$$
d_{\alpha}(A, B) \leq d_{\alpha}(A, C)+d_{\alpha}(C, B)
$$

