ALPHA-DISTANCE – A GENERALIZATION OF CHINESE CHECKER DISTANCE AND TAXICAB DISTANCE

Songlin Tian

The Euclidean distance measures the shortest distance between two points. The taxicab distance [2] measures the distance between two points when only moves along axis-directions are permitted. If, in addition, the diagonal moves are also permitted, the distance between A and B is given by the Chinese checker distance [1]. Let $A(x_1, y_1)$ and $B(x_2, y_2)$ be two points in \mathbb{R}^2 . Denote

$$\Delta_{AB} = \max\{|x_2 - x_1|, |y_2 - y_1|\} \text{ and } \delta_{AB} = \min\{|x_2 - x_1|, |y_2 - y_1|\}.$$

The Euclidean distance between A and B is

$$d(A,B) = \sqrt{\Delta_{AB}^2 + \delta_{AB}^2} \; .$$

The taxicab distance between A and B is

$$d_T(A,B) = \Delta_{AB} + \delta_{AB}.$$

The Chinese checker distance between A and B is

$$d_C(A,B) = \Delta_{AB} + (\sqrt{2} - 1)\delta_{AB}.$$

In this paper we introduce a family of distances which include both Chinese checker distance and taxicab distance as special cases. For each $\alpha \in [0, \pi/4]$, we define the α -distance between A and B by

$$d_{\alpha}(A,B) = \Delta_{AB} + (\sec \alpha - \tan \alpha)\delta_{AB}$$

Then, $d_0(A, B) = d_T(A, B)$ and $d_{\pi/4}(A, B) = d_C(A, B)$. Observe that if $\delta_{AB} > 0$, then

$$d_C(A,B) < d_\alpha(A,B) < d_T(A,B)$$
 for all $\alpha \in (0,\pi/4)$.

When $\delta_{AB} = 0$, A and B lie on a horizontal or vertical line, and it follows that $d_C(A, B) = d_\alpha(A, B) = d_T(A, B) = d(A, B)$ for all $\alpha \in [0, \pi/4]$.

Clearly, $d_{\alpha}(A, B) = 0$ if and only if A = B, and $d_{\alpha}(A, B) = d_{\alpha}(B, A)$ for all $A, B \in \mathbb{R}^2$. The main result of this paper will be that

$$d_{\alpha}(A,B) \le d_{\alpha}(A,C) + d_{\alpha}(C,B),$$