UTILIZING THE EXPANSION OF $\mathbf{P}^{\mathbf{n}}-\mathbf{Q}^{\mathbf{n}}$ TO INTRODUCE AND DEVELOP THE EXPONENTIAL FUNCTION

Bhamini M. P. Nayar

Recently, Bayne et al. [1, 2], have applied the identity

$$
\begin{equation*}
P^{n}-Q^{n}=(P-Q) \sum_{k=0}^{n-1} P^{k} Q^{n-1-k} \tag{1}
\end{equation*}
$$

for real P, Q and positive integers n to present simple proofs of the existence of nth roots and inequalities used in real analysis. In this article the identity (1) is used to prove that f defined by

$$
f(x)=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

is a real-valued continuous function onto the positive reals with the collection of reals as its domain, and to establish some properties of f, including $f(x+y)=$ $f(x) f(y), f(0)=1$ and an elegant proof that $f^{\prime}=f$ where f^{\prime} represents the derivative function for f. The equation $f(r)=(f(1))^{r}$ is shown to hold for rational r. This motivates the notation $f(x)=(f(1))^{x}=e^{x}$ and calling f the exponential function.

As in [4], the exponential function is often introduced as the inverse of the logarithmic function which is defined as

$$
\int_{1}^{x} \frac{1}{t} d t
$$

Later, when convergence of sequences is studied, e^{x} is proved to be the limit of the sequence $\left(1+\frac{x}{n}\right)^{n}$. There again the logarithmic function is used. Dieudonné [3] introduced the logarithmic function by proving that

For any $a>1$, there is a unique increasing continuous function g of the positive reals into the reals such that $g(x y)=g(x)+g(y)$ and $g(a)=1$.

