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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

137. [2002, 210] Proposed by José Luis Díaz, Universidad Politécnica de

Cataluña, Barcelona, Spain.

Find all non-negative integers a, b, and c such that a + b + c and abc are
consecutive integers.

Solution by Russell Euler and Jawad Sadek, Northwest Missouri State Univer-

sity, Maryville, Missouri. Assume without loss of generality that a ≤ b ≤ c. If
2 ≤ a ≤ b ≤ c, then writing b = a+m, c = a+ n and abc = a+ b+ c+ 1 implies

a3 + (m+ n)a2 + amn = 3a+m+ n+ 1.

This is a contradiction as the left-hand side is larger than the right-hand side when
a ≥ 2 and m and n are positive integers. We get a similar contradiction when we
write abc = a+ b+ c− 1. It follows that a has to be either 0 or 1.

Case I. If a = 0, then abc = a+ b+ c+ 1 gives a contradiction. But abc+ 1 =
a + b + c implies 1 = b + c which implies b = 0 and c = 1. So the solution in this
case is a = b = 0 and c = 1.

Case II. If a = 1, then either bc = b+ c+ 2 or bc = b+ c.

(i) If bc = b + c, then b = b/c+ 1 and so we must have b = c. This implies that
b = 2 and c = 2.

(ii) If bc = b + c + 2, then b = (b + 2)/c + 1. This implies that b + 2 = c. By
substitution, b(b+ 2) = 2b+ 4 or b2 = 4 and so b = 2 and c = 4.

The solutions are (0, 0, 1), (1, 2, 2), and (1, 2, 4).

Also solved by J. D. Chow, Edinburg, Texas; Joe Howard, Portales, New Mex-

ico; James T. Bruening, Southeast Missouri State University, Cape Girardeau,

Missouri; and the proposer.


