## SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
137. [2002, 210] Proposed by José Luis Díaz, Universidad Politécnica de Cataluña, Barcelona, Spain.

Find all non-negative integers $a, b$, and $c$ such that $a+b+c$ and $a b c$ are consecutive integers.

Solution by Russell Euler and Jawad Sadek, Northwest Missouri State University, Maryville, Missouri. Assume without loss of generality that $a \leq b \leq c$. If $2 \leq a \leq b \leq c$, then writing $b=a+m, c=a+n$ and $a b c=a+b+c+1$ implies

$$
a^{3}+(m+n) a^{2}+a m n=3 a+m+n+1 .
$$

This is a contradiction as the left-hand side is larger than the right-hand side when $a \geq 2$ and $m$ and $n$ are positive integers. We get a similar contradiction when we write $a b c=a+b+c-1$. It follows that $a$ has to be either 0 or 1 .

Case I. If $a=0$, then $a b c=a+b+c+1$ gives a contradiction. But $a b c+1=$ $a+b+c$ implies $1=b+c$ which implies $b=0$ and $c=1$. So the solution in this case is $a=b=0$ and $c=1$.

Case II. If $a=1$, then either $b c=b+c+2$ or $b c=b+c$.
(i) If $b c=b+c$, then $b=b / c+1$ and so we must have $b=c$. This implies that $b=2$ and $c=2$.
(ii) If $b c=b+c+2$, then $b=(b+2) / c+1$. This implies that $b+2=c$. By substitution, $b(b+2)=2 b+4$ or $b^{2}=4$ and so $b=2$ and $c=4$.

The solutions are $(0,0,1),(1,2,2)$, and $(1,2,4)$.
Also solved by J. D. Chow, Edinburg, Texas; Joe Howard, Portales, New Mexico; James T. Bruening, Southeast Missouri State University, Cape Girardeau, Missouri; and the proposer.

