FUN WITH THE $\sigma(\mathbf{n})$ FUNCTION

Andrew Feist

1. Notation (Standard and Otherwise). The function $\sigma(n)$ is one of the basic number-theoretic arithmetic functions. It is defined as:

$$
\sigma(n)=\sum_{d \mid n} d
$$

Some values of $\sigma(n)$ for small n can be found in [2, sequence A000203]. (Note: It is known that $\sigma(n)$ is also multiplicative, i.e., if j and k have no factors in common other than 1, $\sigma(j k)=\sigma(j) \sigma(k)$.) The Dirichlet convolution of two arithmetic functions $f(n)$ and $g(n)$, itself a function of n, is defined as follows.

$$
f * g=\sum_{d \mid n} f(d) g\left(\frac{n}{d}\right)
$$

We will use \perp to denote relative primality.
2. Sigma-Primes. A number n is called sigma-prime if and only if $n \perp \sigma(n)$. The sigma-prime numbers below 100 can be found in [2, sequence A014567]. Two rather straightforward theorems are the following.

Theorem 1. All powers of primes are sigma-prime.
Theorem 2. No perfect numbers are sigma-prime.
To build this theory, we shall, in the time-honored tradition of mathematics, start with the simple examples and move up. If a number n is the product of two primes, say p and q, then $\sigma(n)=1+p+q+p q=\sigma(p) \sigma(q)$. Now, the only divisors of $p q$ are p and q. Clearly, $p \perp \sigma(p)$. Thus, $p \perp \sigma(p q)$ if and only if $p \perp \sigma(q)$. Similarly, $q \perp \sigma(p q)$ if and only if $q \perp \sigma(p)$. Assuming $p<q$, we can see that (unless $p=2$ and $q=3$), $p+1<q$ and from that $p+1 \perp q$. Note also that in the case of the above exception, $q+1 \not \perp p$. Thus, we can generalize and say that $n=p q$ is sigma-prime if and only if $q+1 \perp p$. This easily extends to the following theorem.

Theorem 3. If $n=p_{1} p_{2} \cdots p_{k}$, where $p_{1}<p_{2}<\cdots<p_{k}$, and each of p_{1}, \ldots, p_{k} is a prime, then n is sigma-prime if and only if $p_{i} \perp 1+p_{j}$ whenever $i<j$.

