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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

21. [1990, 80; 1991, 95] Proposed by Stanley Rabinowitz, Westford, Mass-
achusetts.

Find distinct positive integers, a, b, ¢, d such that

a+b+c+d—+ abed = ab+ bec+ ca + ad + bd + ¢d + abc + abd + acd + bed.

Solution by Les Reid, Southwest Missouri State University, Springfield,
Missouri.

More generally, we will find all positive integer solutions to

a+ b+ c+ d+ abed = abe + abd + acd 4 bed 4+ ab + ac + ad 4 be + bd + cd.
Rewriting as

abcd — abc — abd — acd — bed — ab—ac—ad —bc—cd+a+b+c+d=0

and noting that the left-hand side has the opposite parity of (a—1)(b—1)(c—1)(d—1)
[since their difference is 2(ab + ac + ad + bc + bd + c¢d — a — b — ¢ — d) + 1], we see
that (a —1)(b—1)(¢—1)(d — 1) must be odd, hence a, b, ¢, and d must all be even.

Since our original equation is symmetric in the variables, we may assume without
loss of generality that 0 < d <c<b<a.

If d = 2 and ¢ = 2, our equation is equivalent to ab + 7a + 7b = 0 which has no
positive solutions.

If d = 2 and ¢ = 4, our equation may be rewritten as (a — 13)(b— 13) = 171. Since
171 can be factored as 171-1, 57-3, 19-9, we obtain the solutions a = 184, b = 14;
a=70,b=16 a=232,b=22.

If d = 2 and ¢ = 6, our equation may be rewritten as (3a—19)(3b—19) = 373. Since
373 is prime, the only possible factorization is as 373 - 1, but this yields non-integer
values for a and b.

If d = 2 and ¢ = 8, our equation becomes bab — 25a — 25b = 6, which is clearly
impossible since the left-hand side is not divisible by 5.



