SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
21. [1990, 80; 1991, 95] Proposed by Stanley Rabinowitz, Westford, Massachusetts.

Find distinct positive integers, a, b, c, d such that

$$
a+b+c+d+a b c d=a b+b c+c a+a d+b d+c d+a b c+a b d+a c d+b c d
$$

Solution by Les Reid, Southwest Missouri State University, Springfield, Missouri.

More generally, we will find all positive integer solutions to

$$
a+b+c+d+a b c d=a b c+a b d+a c d+b c d+a b+a c+a d+b c+b d+c d
$$

Rewriting as

$$
a b c d-a b c-a b d-a c d-b c d-a b-a c-a d-b c-c d+a+b+c+d=0
$$

and noting that the left-hand side has the opposite parity of $(a-1)(b-1)(c-1)(d-1)$ [since their difference is $2(a b+a c+a d+b c+b d+c d-a-b-c-d)+1$], we see that $(a-1)(b-1)(c-1)(d-1)$ must be odd, hence a, b, c, and d must all be even.

Since our original equation is symmetric in the variables, we may assume without loss of generality that $0<d \leq c \leq b \leq a$.

If $d=2$ and $c=2$, our equation is equivalent to $a b+7 a+7 b=0$ which has no positive solutions.

If $d=2$ and $c=4$, our equation may be rewritten as $(a-13)(b-13)=171$. Since 171 can be factored as $171 \cdot 1,57 \cdot 3,19 \cdot 9$, we obtain the solutions $a=184, b=14$; $a=70, b=16 ; a=32, b=22$.

If $d=2$ and $c=6$, our equation may be rewritten as $(3 a-19)(3 b-19)=373$. Since 373 is prime, the only possible factorization is as $373 \cdot 1$, but this yields non-integer values for a and b.

If $d=2$ and $c=8$, our equation becomes $5 a b-25 a-25 b=6$, which is clearly impossible since the left-hand side is not divisible by 5 .

