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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

40. [1991, 150; 1992, 150–151] Proposed by Stan Wagon, Macalester College,
St. Paul, Minnesota.

A tetrahedron is a geometric solid with 4 vertices, 6 edges, and 4 triangu-
lar faces. A Heron triangle is one whose sides and area are integers. A Heron
tetrahedron is one having Heron triangles as faces and whose volume is an integer.

(a) Show that if △ABC is acute, then a tetrahedron exists with each of its faces
congruent to △ABC.

(b)* John Leech has shown that a Heron tetrahedron exists: Let △ABC have sides
148, 195, and 203 and let T be the tetrahedron obtained from this triangle as
in (a). Then each face of T has integer area and T has integer volume. The
following question is inspired by Jim Buddenhagen’s investigation of Heron
triangles whose area is a square. Question: Is there a Heron tetrahedron
whose volume is a perfect square or perfect cube?

Comment by Les Reid, Southwest Missouri State University, Springfield,
Missouri. Once the existence of a Heron tetrahedron is known, it’s relatively easy
to construct a Heron tetrahedron whose volume is a perfect square (or, in fact, any
perfect power whose exponent is not a multiple of 3). In general, if we scale the
tetrahedron by a factor of L, the volume will increase by a factor of L3 and the area
by a factor of L2 (so it will still be an integer). If we choose L to be the square-free
part of the volume, the volume will be a perfect square. For example, starting with
Leech’s tetrahedron having four congruent faces with edges of length 148, 195, and
203, it’s volume is

611520 = 26 ∗ 3 ∗ 5 ∗ 72 ∗ 13,

whose square-free part is 3 ∗ 5 ∗ 13. Therefore, the corresponding tetrahedron with
edges of length 28860, 38025, and 39585 will have a volume of

21294002.

A similar argument works as long as the exponent of the power is not a multiple of
3. For example, if we want the volume to be a fifth power (and begin with Leech’s
tetrahedron), we would choose

L = 2x ∗ 3y ∗ 5z ∗ 7s ∗ 13t,


