A NOTE ON THE ISOPERIMETRIC INEQUALITY

Richard E. Bayne and Myung H. Kwack

In most calculus books students are introduced to an isoperimetric theorem in the following form. Among all rectangles with a given perimeter the square has the largest area [5]. However, this isoperimetric theorem for rectangles can be proved easily in an algebraic class using quadratic functions. The following theorem might be more appropriate for a calculus class. Among all quadrilaterals with a given perimeter and a given side, the trapezoid with the other sides of equal length, and of equal angles between them has the largest area. This isoperimetric theorem for quadrilaterals has a nice application, an isoperimetric theorem for *n*-polygons, i.e. polygons with *n* vertices. Among all *n*-polygons with a given side and a given perimeter, the *n*-polygon with the maximum area is inscribed in a circle and has all other sides of equal length and of equal angles between them where the existence of such an *n*-polygon is obtained from the general result that a continuous function on a bounded and closed subset of an Euclidean plane, \mathbb{R}^N , attains a maximum value.

In this note proofs of the above theorems are presented and the theorems are then utilized along with inscribed polygons to obtain a proof for the following isoperimetric theorem for simple closed curves. Let S be a closed curve formed by a circular arc of length s together with its chord of length ℓ . Then any simple closed curve Σ formed by a curve of length s together with a line segment of length ℓ satisfies the inequality $A(\Sigma) \leq A(S)$ where $A(\sigma)$ denotes the area enclosed by the simple closed curve σ and the equality holds if and only if Σ coincides with S. As a corollary we obtain the isoperimetric theorem for simple closed curves [2]. Any simple closed curve Σ with length s satisfies the inequality $4\pi A(\Sigma) \leq s^2$, with equality if and only if Σ is a circle.

In his paper [4] "The Isoperimetric Inequality," Professor Osserman obtains the following inequality for any *n*-polygon Σ with perimeter *s*.

$$\frac{s^2}{A(\Sigma)} \ge \frac{4}{n} \tan \frac{\pi}{n} > 4\pi$$