ON A SYMMETRIC FUNCTION OF THE PRIMITIVE ROOTS OF PRIMES

Joseph B. Dence and Thomas P. Dence

1. Introduction. The elementary symmetric functions of n variables are:

$$
\begin{aligned}
s_{1} & =u_{1}+u_{2}+\cdots+u_{n} \\
s_{2} & =u_{2} u_{1}+u_{3} u_{1}+u_{3} u_{2}+\cdots+u_{n} u_{n-1}=\sum_{i>j} u_{i} u_{j} \\
s_{3} & =\sum_{i>j>k} u_{i} u_{j} u_{k} \\
& \vdots \\
s_{n} & =\prod_{i=1}^{n} u_{i} .
\end{aligned}
$$

In a previous paper [1] we investigated the elementary symmetric function s_{1} of the primitive roots of a prime. The principal tool was the use of certain cyclotomic polynomials. The present work continues this line of investigation and considers the function s_{2} of the primitive roots. Throughout, p denotes an odd prime, $d \geq 1$ is any divisor of $p-1$, and $\left\{g_{i}\right\}$ is the set of primitive roots of p.
2. Numerical Results. The first few odd primes, beginning with $p=5$, yield the following simple results: $p=5: s_{2} \equiv 1(\bmod p) ; p=7: s_{2} \equiv 1(\bmod p)$; $p=11: s_{2} \equiv 1(\bmod p) ; p=13: s_{2} \equiv-1(\bmod p) ; p=17: s_{2} \equiv 0(\bmod p)$. The residues obtained strongly urge the computation of the residues modulo p of s_{2} for many more primes. A sampling of these computations is given in Table 1. Since in [1] it was important to note whether $p-1$ is squarefree or not, Table 1 has been organized so that the primes p in columns (1)-(3) are those where $p-1$ is not squarefree; in columns (4) and (5) $p-1$ is squarefree.

