AN EXTENSION OF DINI'S LEMMA TO NETS OF FUNCTIONS INTO UNIFORM SPACES

Bhamini M. P. Nayar

A classical and important lemma of Dini in analysis states:
Theorem D. If $\left\{f_{n}\right\}$ is a sequence of real-valued continuous functions on $[0,1]$ such that $\left\{f_{n}(x)\right\}$ is a non-increasing sequence converging to 0 for each $x \in[0,1]$ then $f_{n} \rightarrow 0$ uniformly.

In this note we extend this lemma to nets of functions mapping into uniform spaces. The following readily established results are used as patterns to formulate and prove the extension.
$\left(1^{\circ}\right)$ A non-increasing sequence $\left\{x_{n}\right\}$ of nonnegative reals converges to 0 if and only if for each $\epsilon>0, \emptyset \neq\left\{n: x_{n}-0<\epsilon\right\} \subset\left\{n: x_{k}-0<\epsilon\right.$ for every $\left.k \geq n\right\}$.

An equivalent form of Theorem D is
$\left(2^{\circ}\right)$ If $\left\{f_{n}\right\}$ is a sequence of real-valued continuous functions on $[0,1]$ such that $\left\{\left|f_{n}(x)\right|\right\}$ is a non-increasing sequence converging to 0 for each $x \in[0,1]$ then $f_{n} \rightarrow 0$ uniformly.

These observations motivate the following definitions.
Definition 1. If X is a uniform space with uniformity \mathcal{U} we say a net $\left\{x_{n}\right\}_{\Lambda}$ converges to $x \in X$ in a monotone fashion if for each $U \in \mathcal{U}, \emptyset \neq\left\{n:\left(x_{n}, x\right) \in\right.$ $U\} \subset\left\{n:\left(x_{k}, x\right) \in U\right.$ for every $k \in \Lambda$ with $\left.k \geq n\right\}$.

Definition 2. Let Y be a uniform space with uniformity \mathcal{U}, X be a nonempty set, and $f: X \rightarrow Y$ a function. We say that a net $\left\{f_{n}\right\}_{\Lambda}$ of functions from X to Y is pointwise monotonically convergent to f if $\left\{f_{n}(x)\right\}_{\Lambda}$ converges to $f(x)$ in a monotone fashion for each $x \in X$.

A net $\left\{f_{n}(x)\right\}_{\Lambda}$ from a topological space X to a uniform space Y with uniformity \mathcal{U} converges to $f: X \rightarrow Y$ uniformly if for each $U \in \mathcal{U},\left(f_{n}(x), f(x)\right) \in U$ ultimately. For facts on topological and uniform spaces used here without definition see [1].

We are now prepared to present our extension of Dini's lemma.
Theorem. Let X be a compact space and let Y be a uniform space with uniformity \mathcal{U}. Let $\left\{f_{n}\right\}_{\Lambda}$ be a net of continuous functions from X to Y. If $\left\{f_{n}\right\}_{\Lambda}$ is pointwise monotonically convergent to the continuous function $f: X \rightarrow Y$ then $\left\{f_{n}\right\}_{\Lambda}$ converges to f uniformly.

