LINEARIZATION OF TRIGONOMETRIC POLYNOMIALS AND INTEGRALS

Thierry Dana-Picard and Daniel Cohen

1. The Method. One of the problems encountered in calculus courses is the computation of simple integrals. The existence of a primitive for a continuous function on an interval is a well-known theorem (see [3]), but the actual computation is sometimes quite hard to perform, even impossible. In [2] a geometric approach for computing one particular trigonometric integral is presented and an interesting method for computing trigonometric integrals is given in [1]. We present a way to compute integrals of trigonometric polynomials, via a linearization of these polynomials using complex numbers and Euler's formula (the method is simple, but we did not find any exposition of it in classical textbooks).

Recall that for $x \in \mathbb{R}, e^{i x}=\cos x+i \sin x$. By DeMoivre's formula, we have for any $x \in \mathbb{R}, e^{-i x}=\cos x-i \sin x$ and for any $n \in \mathbb{Z},\left(e^{i x}\right)^{n}=e^{n i x}$. Therefore,

$$
\left\{\begin{array}{l}
\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right) \\
\sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)
\end{array}\right.
$$

These are the so-called Euler's formula.
By Newton's binomial development, we can now compute any positive integral power of $\cos x$ and of $\sin x$ and any product of such powers as a linear combination of powers of $e^{i x}$ and $e^{-i x}$.

1. Let $f(x)=\cos ^{p} x$. Then

$$
\begin{aligned}
\cos ^{p} x & =\left[\frac{1}{2}\left(e^{i x}+e^{-i x}\right)\right]^{p} \\
& =\frac{1}{2^{p}} \sum_{k=0}^{p}\binom{p}{k}\left(e^{k i x} \cdot e^{-(p-k) i x}\right) \\
& =\frac{1}{2^{p}} \sum_{k=0}^{p}\binom{p}{k} e^{(2 k-p) i x} \\
& =\frac{1}{2^{p}} \sum_{k=0}^{p}\binom{p}{p-k} e^{(2 k-p) i x}
\end{aligned}
$$

