SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.

113*. [1998, 46] Proposed by Kamal Jain, Georgia Institute of Technology, Atlanta, Georgia.

Find all ordered pairs (a, b) such that

$$
\tan (a \pi)=b
$$

and a and b are rational numbers.

Solution by Bob Prielipp, University of Wisconsin - Oshkosh, Oshkosh, Wisconsin.

In his article "Rational Values of Trigonometric Functions" [see pp. 507-508 of The American Mathematical Monthly, 52 (1945)], J. M. H. Olmsted proved that the only rational values of $\tan (a \pi)$ (where a is a rational number) are 0 and ± 1.

Thus, if a and b are rational numbers then (a, b) is a solution of $\tan (a \pi)=b$ if and only if (a is an arbitrary integer and $b=0$) or ($a=\frac{1}{4}+k$ where k is an arbitrary integer and $b=1$) or ($a=-\frac{1}{4}+k$ where k is an arbitrary integer and $b=-1$).

Also, on the pages leading up to p. 41 of his book Irrational Numbers, (Carus Monograph \#11) The Mathematical Association of America (distributed by John Wiley and Sons, Inc.), 1963, Ivan Niven proved that if θ is rational in degrees, say $\theta=2 \pi r$ for some rational number r, then the only rational values of the trigonometric functions of θ are as follows: $\sin \theta, \cos \theta=0, \pm \frac{1}{2}, \pm 1 ; \sec \theta, \csc \theta=$ $\pm 1, \pm 2 ; \tan \theta, \cot \theta=0, \pm 1$.
114. [1998, 46] Proposed by Kenneth B. Davenport, 301 Morea Road, Frackville, Pennsylvania.
(a) Prove that

$$
\int_{0}^{\infty} \frac{1}{1+x^{2}} \cdot \frac{4}{4+x^{2}} \cdots \cdots \frac{n^{2}}{n^{2}+x^{2}} d x=\frac{\pi}{2} \frac{n}{2 n-1}
$$

