SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
104. [1997, 35; 1998, 59-61] Proposed by Kenneth Davenport, Box 491, Frackville, Pennsylvania.

Show that

$$
1 \cdot \sin \frac{\pi}{2 n}+3 \cdot \sin \frac{3 \pi}{2 n}+5 \cdot \sin \frac{5 \pi}{2 n}+\cdots+(2 n-1) \sin \frac{(2 n-1) \pi}{2 n}=n \csc \frac{\pi}{2 n}
$$

Solution III by Paul S. Bruckman, Edmonds, Washington.

Let

$$
o_{k}=\frac{1-(-1)^{k}}{2}
$$

Then,

$$
\sum_{k=0}^{2 n-1} k \sin \frac{k \pi}{2 n} \cdot o_{k}=n \cdot \csc \frac{\pi}{2 n}, \quad n=1,2, \ldots
$$

is easily evaluated using complex variables. That is,

$$
\sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right),
$$

