CONSTRUCTING PYTHAGOREAN TRIPLE PRESERVING MATRICES

Leonard Palmer, Mangho Ahuja, and Mohan Tikoo

1. Introduction. In the first paper we found that a 3×3 matrix which is a PTPM, i.e., converts a Pythagorean triple into a Pythagorean triple, has to be of the type H , where

$$
H=\left(\begin{array}{ccc}
\left(\left(r^{2}-t^{2}\right)-\left(s^{2}-u^{2}\right)\right) / 2 & r s-t u & \left(\left(r^{2}-t^{2}\right)+\left(s^{2}-u^{2}\right)\right) / 2 \\
r t-s u & r u+s t & r t+s u \\
\left(\left(r^{2}+t^{2}\right)-\left(s^{2}+u^{2}\right)\right) / 2 & r s+t u & \left(\left(r^{2}+t^{2}\right)+\left(s^{2}+u^{2}\right)\right) / 2
\end{array}\right) .
$$

We also recall that every Pythagorean triple has the form $\left(m^{2}-n^{2}, 2 m n, m^{2}+\right.$ n^{2}) and furthermore, is a PPT if the pair (m, n) satisfies the four conditions listed below.

I-1. m, n are positive integers
I-2. $m>n$
I-3. $\operatorname{gcd}(m, n)=1$
I-4. $m+n \equiv 1(\bmod 2)$.
We have seen that $\left(m^{2}-n^{2}, 2 m n, m^{2}+n^{2}\right) H=\left(M^{2}-N^{2}, 2 M N, M^{2}+N^{2}\right)$, where the pairs (m, n) and (M, N) are related by the matrix equation

$$
(m, n)\left(\begin{array}{cc}
r & s \\
t & u
\end{array}\right)=(M, N)
$$

If we start with a pair (m, n) which satisfies I-1 to I-4 and multiply it with the matrix

$$
R=\left(\begin{array}{ll}
r & s \\
t & u
\end{array}\right)
$$

the new pair (M, N) may not satisfy I-1 to I-4. To assure that (M, N) also satisfies I- 1 to I-4, suitable restrictions must be imposed on r, s, t, and u. These are listed as $\mathrm{R}-1$ to $\mathrm{R}-4$ below.

