FINDING PYTHAGOREAN TRIPLE PRESERVING MATRICES

Leonard Palmer, Mangho Ahuja, and Mohan Tikoo

1. Introduction. When we multiply a Pythagorean triple with a 3×3 matrix we obtain another triple, but will it be Pythagorean? A problem posed in 1987 showed an example of a 3×3 matrix

$$
A=\left(\begin{array}{lll}
2 & 1 & 2 \\
1 & 2 & 2 \\
2 & 2 & 3
\end{array}\right)
$$

which converts a Pythagorean triple into a Pythagorean triple [1]. For example $(3,4,5) A=(20,21,29)$, which is again a Pythagorean triple. Indeed one can verify that if $(a, b, c) A=(d, e, f)$ and $a^{2}+b^{2}=c^{2}$, then $d^{2}+e^{2}=f^{2}$. In other words the matrix A "preserves" Pythagorean triples.

In this paper we will find matrices which "preserve" Pythagorean triples. To be specific, we will find necessary and sufficient conditions that a 3×3 matrix preserves Pythagorean triples. In the second paper we will discuss construction of matrices which play a prescribed role, i.e. given two Pythagorean triples, say X and Y, we construct a matrix A such that $X A=Y$.
2. Preliminary Definitions. We define a Pythagorean Triple (PT) as a triple (a, b, c) where a, b, and c are positive integers and $c^{2}=a^{2}+b^{2}$. If in addition, a, b, and c have no factor in common, the triple is called a Primitive Pythagorean Triple (PPT). By our definition both $(3,4,5)$ and $(4,3,5)$ are PPTs. To keep our analysis simple, it is necessary to distinguish between these two types. We will say $(3,4,5)$ is of type A and $(4,3,5)$ is of type B, i.e., a PPT (a, b, c) is of type A or type B according as a or b is an odd integer. Furthermore, we will denote them by PPTA and PPTB, respectively. A matrix that converts a PPT (of type A or B) into a PPT (of type A or B) will be called a Pythagorean Triple Preserving Matrix and will be denoted by PTPM. We note that the matrix A shown above converts a PPTA into a PPTB. The object of this paper is to find all PTPMs.

