PARABOLAS IN TAXICAB GEOMETRY

Y. Phoebe Ho and Yan Liu

1. Introduction. Reynolds [1] raised some open questions concerning the definition of taxicab parabolas. Moser, Kramer [2], and Iny [3] looked into these questions but did not answer all of them. We would like to provide an analysis to the solutions with more details in this paper.

Let's first take a look at the definition of taxicab metric.
Definition 1.1. Let $d_{T}: R^{2} \times R^{2} \rightarrow[0, \infty)$
be defined as

$$
d_{T}\left(\left(a_{1}, a_{2}\right),\left(b_{1}, b_{2}\right)\right)=\left|a_{1}-b_{1}\right|+\left|a_{2}-b_{2}\right| .
$$

Then $\left(d_{T}, R^{2}\right)$ forms a metric space and d_{T} is called the taxicab metric on R^{2}.
In R^{2}, there are several different but equivalent ways to define straight lines using Euclidean metric. However, Chen [4] showed that these ways are no longer equivalent when Euclidean metric is replaced by taxicab metric. Liu [5] used the idea of a line being the bisector of two points to define the taxicab bisector (or taxicab line).

Definition 1.2 Let $P_{1}\left(x_{1}, y_{1}\right)$ and $P_{2}\left(x_{2}, y_{2}\right)$ be two points in R^{2}. Then the set

$$
D=\left\{(x, y)| | x-x_{1}\left|+\left|y-y_{1}\right|=\left|x-x_{2}\right|+\left|y-y_{2}\right|\right\}\right.
$$

is called the taxicab bisector (or the taxicab line) of the points P_{1} and P_{2}.
Since a parabola in Euclidean geometry is the set of the points which are equidistant to a fixed point; called the focus, and a fixed line; called the directrix, we need to discuss the distance between a point and a taxicab bisector before defining the taxicab parabola.

Theorem 1.1.[1] The shortest taxicab distance from a point to a Euclidean line is either the horizontal distance or the vertical distance whichever is smaller.

Liu [5] showed that there are three types of taxicab bisectors determined by the relation between the difference of x-coordinates and that of y-coordinates of P_{1} and P_{2}. Two of them are Euclidean line or the union of a Euclidean line segment and

