SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
67. [1994, 47; 1995, 43] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Show that one more than four times the product of two consecutive even or odd numbered triangular numbers is a square.

Comment by Joseph B. Dence, University of Missouri-St. Louis, St. Louis, Missouri.
Let $\{P(2 n+1, k)\}_{k=1}^{\infty}$ be the polygonal numbers of order $2 n+1$. For example, $\{P(3, k)\}_{k=1}^{\infty}$ are the triangular numbers: $P(3,1)=T_{1}=1, P(3,2)=T_{2}=3, P(3,3)=$ $T_{3}=6, \ldots$ Similarly, the first few heptagonal numbers are $P(7,1)=1, P(7,2)=7$, $P(7,3)=18, P(7,4)=34, \ldots$.
-
1

18

34

By induction, $P(7, k)=k(5 k-3) / 2$, and in general any polygonal number of odd order is given explicitly by

$$
P(2 n+1, k)=\frac{k}{2}[(2 n-1) k+(3-2 n)], \text { for } n \geq 1
$$

After some algebra, we find

$$
\begin{aligned}
& P(2 n+1, k) P(2 n+1, k+2) \\
& =\frac{1}{4}\left([k[(2 n-1)(k+2)+(3-2 n)]]^{2}+2(3-2 n) k[(2 n-1)(k+2)+(3-2 n)]\right),
\end{aligned}
$$

