A NECESSARY AND SUFFICIENT CONDITION FOR TWIN PRIMES

Joseph B. Dence
University of Missouri-St. Louis

Thomas P. Dence

Ashland University

Wilson's Theorem, and its converse, give a necessary and sufficient condition for an integer p to be a prime [1]. In this note, we give an analogous condition for $(p, p+2)$ to be twin primes. This result, similar in nature to that of Clement [2], is not commonly encountered in introductory number theory texts $[3,4,5]$, and would make an interesting topical addition to the first course.

We start with the well-known result that $(p-1)!\equiv-1(\bmod p)$ if and only if p is a prime. Since $(p-1)$! is equal to $(p-1)(p-2)$!, and $(p-1) \equiv-1(\bmod p)$, it follows that $(-1)(p-2)!\equiv-1(\bmod p)$ if and only if p is a prime. Repeating this reduction, next with $p-2, n-2$ more times gives the result

$$
\begin{equation*}
(n-1)!(-1)^{n-1}(p-n)!\equiv-1 \quad(\bmod p), \quad 1 \leq n<p \tag{1}
\end{equation*}
$$

Choosing $n=(p+1) / 2$ and substituting into (1), we obtain a key identity,

$$
\left(\frac{p-1}{2}\right)!^{2} \equiv \begin{cases}-1(\bmod p), & \text { if } p \text { is a }(4 k+1) \text {-prime } \tag{2}\\ +1(\bmod p), & \text { if } p \text { is a }(4 k+3) \text {-prime }\end{cases}
$$

In the case of twin primes, two cases arise.
Case 1. $p=4 k+1$ and $p+2=4 k+3$.
Then (2) gives $((p-1) / 2)!^{2} \equiv-1(\bmod p)$ and $((p+1) / 2)!^{2} \equiv 1(\bmod p+2)$. The latter is equivalent to $\left(p^{2}+2 p+1\right)((p-1) / 2)!^{2} \equiv 4(\bmod p+2)$, and the reduction of $\left(p^{2}+2 p+1\right) \equiv 1(\bmod p+2)$ gives $((p-1) / 2)!^{2} \equiv 4(\bmod p+2)$, or

$$
\begin{equation*}
((p-1) / 2)!^{2}=4+r(p+2) \tag{3}
\end{equation*}
$$

