SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.

69. Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Let G be a group such that whenever $g_1, g_2, g_3 \in G$ and $g_1g_2 = g_3g_1$, then $g_2 = g_3$. Show that:

(a) If G has two elements of order 2, then G must contain the Klein four group.

(b) The set $H = \{g \mid g^k = 1, \text{ where } k \text{ is some integer} \}$ is a subgroup of G.

Composite solution by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; N. J. Kuenzi, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; Jayanthi Ganapathy, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin; and the proposer.

First we shall prove that G is abelian. Let a and b be elements of G. Since b(ab) = (ba)b, it follows from the given condition that ab = ba for all $a, b \in G$. Thus, G is abelian.

(a) Suppose a and b are distinct elements of G of order 2. If ab = 1, then $a = a \cdot 1 = aab = 1 \cdot b = b$. Hence, $ab \neq 1$ and since

$$(ab)^2 = a^2b^2 = 1,$$

the order of ab is 2. Finally, ab is distinct from a and b because if ab = a or ab = b, then b = 1 or a = 1. Now it can be easily seen that the set consisting of the elements 1, a, b, and ab is isomorphic to the Klein four group.

Comment by the editor. The editor is responsible for some poor wording in part (b) of this problem. As a result, two different solutions to the (b) part of this problem were given. The editor should have worded part (b) in one of the following ways.

(b1) Let k be a fixed integer. The set

$$H = \{g \mid g^k = 1\}$$

is a subgroup of G.

Solution by Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin and the proposer.

Clearly the identity element is in H. Now, suppose x and y are in H. It is enough to show that

$$(xy^{-1})^k = 1.$$