SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.

65*. [1994, 47] Proposed by Stanley Rabinowitz, Westford, Massachusetts.
Evaluate

$$
\sum_{k=0}^{n}\left|\binom{n}{k}-2^{k}\right|
$$

Comment by the proposer.
I have no solution to this problem. It is equivalent to the question:

$$
\text { "When is } 2^{k}>\binom{n}{k} ? "
$$

For a related problem, see problem E3327 in the American Mathematical Monthly, May 1989, pp. 445-446 and the solution to problem E3327 in the American Mathematical Monthly, February 1991, pp. 164-165.

Comment by the editor.
The problem remains open.
66. [1994, 47] Proposed by Alvin Beltramo (student), Central Missouri State University, Warrensburg, Missouri.

Consider the following generalization of the car and the goats problem. A TV host shows you d doors, a car is hidden behind w doors and the rest of the doors are hiding goats. You get to pick a door, winning whatever is behind it. The host, who knows where the cars are, then opens s doors, in the process revealing x cars. The host invites you to switch your choice if you so wish. When should you switch?

