## SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new insights on old problems are always welcomed by the problem editor.
47. [1992, 88; 1993, 94] Proposed by Russell Euler, Northwest Missouri State University, Maryville, Missouri.

Find all the solutions of

$$
(x-1) x(x+1)(x+2)=-1
$$

Comment by the editor.
Due to an error by the editor, a remark by the proposer was omitted from the solution to the problem. At the time the problem was proposed, the proposer noted that if $x$ is an integer, the factorization provided in the solution indicates that the product of four consecutive integers is one less than the square of an integer.
57. [1993, 90] Proposed by Mohammad K. Azarian, University of Evansville, Evansville, Indiana.

Let $s$ and $k$ be positive integers. Evaluate

$$
\lim _{n \rightarrow \infty} \prod_{i=1}^{k} \sum_{j=1}^{n} j^{i}\left(\frac{s}{n}\right)^{i+1}
$$

Solution I by Joseph E. Chance, University of Texas-Pan American, Edinburg, Texas; Seung-Jin Bang, Albany, California; and the proposer.

$$
\sum_{j=1}^{n} j^{i}\left(\frac{s}{n}\right)^{i+1}=\sum_{j=1}^{n}\left(\frac{j s}{n}\right)^{i} \frac{s}{n}
$$

is an upper Riemann sum for

$$
\int_{0}^{s} x^{i} d x
$$

